Skip to main content
Top
Published in: Journal of Scientific Computing 1/2019

07-03-2019

Numerical Approximation of a Phase-Field Surfactant Model with Fluid Flow

Authors: Guangpu Zhu, Jisheng Kou, Shuyu Sun, Jun Yao, Aifen Li

Published in: Journal of Scientific Computing | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modeling interfacial dynamics with soluble surfactants in a multiphase system is a challenging task. Here, we consider the numerical approximation of a phase-field surfactant model with fluid flow. The nonlinearly coupled model consists of two Cahn–Hilliard-type equations and incompressible Navier–Stokes equation. With the introduction of two auxiliary variables, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. By certain subtle explicit-implicit treatments to stress and convective terms, we construct first and second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving only a sequence of linear elliptic equations, and computations of phase-field variables, velocity and pressure are fully decoupled. We further establish a rigorous proof of unconditional energy stability for the first-order scheme. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow, where the increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khatri, S., Tornberg, A.-K.: An embedded boundary method for soluble surfactants with interface tracking for two-phase flows. J. Comput. Phys. 256, 768–790 (2014)MathSciNetCrossRefMATH Khatri, S., Tornberg, A.-K.: An embedded boundary method for soluble surfactants with interface tracking for two-phase flows. J. Comput. Phys. 256, 768–790 (2014)MathSciNetCrossRefMATH
2.
go back to reference Yang, X.: Numerical approximations for the Cahn–Hilliard phase field model of the binary fluid-surfactant system. J. Sci. Comput. 1–21 (2017) Yang, X.: Numerical approximations for the Cahn–Hilliard phase field model of the binary fluid-surfactant system. J. Sci. Comput. 1–21 (2017)
3.
go back to reference Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017)MathSciNetCrossRef Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model. Comput. Methods Appl. Mech. Eng. 318, 1005–1029 (2017)MathSciNetCrossRef
4.
go back to reference Fonseca, I., Morini, M., Slastikov, V.: Surfactants in foam stability: a phase-field model. Arch. Ration. Mech. Anal. 183, 411–456 (2007)MathSciNetCrossRefMATH Fonseca, I., Morini, M., Slastikov, V.: Surfactants in foam stability: a phase-field model. Arch. Ration. Mech. Anal. 183, 411–456 (2007)MathSciNetCrossRefMATH
5.
go back to reference Iglauer, S., Wu, Y., Shuler, P., Tang, Y., Goddard III, W.A.: New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J. Petrol. Sci. Eng. 71, 23–29 (2010)CrossRef Iglauer, S., Wu, Y., Shuler, P., Tang, Y., Goddard III, W.A.: New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J. Petrol. Sci. Eng. 71, 23–29 (2010)CrossRef
6.
go back to reference Liu, H., Zhang, Y.: Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 229, 9166–9187 (2010)CrossRefMATH Liu, H., Zhang, Y.: Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 229, 9166–9187 (2010)CrossRefMATH
7.
go back to reference Lai, M.-C., Tseng, Y.-H., Huang, H.: Numerical simulation of moving contact lines with surfactant by immersed boundary method. Commun. Comput. Phys. 8, 735 (2010)MATH Lai, M.-C., Tseng, Y.-H., Huang, H.: Numerical simulation of moving contact lines with surfactant by immersed boundary method. Commun. Comput. Phys. 8, 735 (2010)MATH
8.
go back to reference Liu, H., Ba, Y., Wu, L., Li, Z., Xi, G., Zhang, Y.: A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants. J. Fluid Mech. 837, 381–412 (2018)MathSciNetCrossRef Liu, H., Ba, Y., Wu, L., Li, Z., Xi, G., Zhang, Y.: A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants. J. Fluid Mech. 837, 381–412 (2018)MathSciNetCrossRef
9.
10.
go back to reference Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)MathSciNetCrossRefMATH Shen, J., Yang, X.: A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)MathSciNetCrossRefMATH
11.
go back to reference Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst 28, 1669–1691 (2010)MathSciNetCrossRefMATH Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst 28, 1669–1691 (2010)MathSciNetCrossRefMATH
12.
go back to reference Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53, 279–296 (2015)MathSciNetCrossRefMATH Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53, 279–296 (2015)MathSciNetCrossRefMATH
13.
go back to reference James, A.J., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201, 685–722 (2004)MathSciNetCrossRefMATH James, A.J., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201, 685–722 (2004)MathSciNetCrossRefMATH
14.
go back to reference Muradoglu, M., Tryggvason, G.: A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 2238–2262 (2008)CrossRefMATH Muradoglu, M., Tryggvason, G.: A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227, 2238–2262 (2008)CrossRefMATH
15.
go back to reference Zhang, L., Kang, Q., Yao, J., Gao, Y., Sun, Z., Liu, H., Valocchi, A.J.: Pore scale simulation of liquid and gas two-phase flow based on digital core technology. Sci. China Technol. Sci. 58, 1375–1384 (2015)CrossRef Zhang, L., Kang, Q., Yao, J., Gao, Y., Sun, Z., Liu, H., Valocchi, A.J.: Pore scale simulation of liquid and gas two-phase flow based on digital core technology. Sci. China Technol. Sci. 58, 1375–1384 (2015)CrossRef
16.
go back to reference Booty, M., Siegel, M.: A hybrid numerical method for interfacial fluid flow with soluble surfactant. J. Comput. Phys. 229, 3864–3883 (2010)CrossRefMATH Booty, M., Siegel, M.: A hybrid numerical method for interfacial fluid flow with soluble surfactant. J. Comput. Phys. 229, 3864–3883 (2010)CrossRefMATH
17.
go back to reference Xu, J.-J., Ren, W.: A level-set method for two-phase flows with moving contact line and insoluble surfactant. J. Comput. Phys. 263, 71–90 (2014)MathSciNetCrossRefMATH Xu, J.-J., Ren, W.: A level-set method for two-phase flows with moving contact line and insoluble surfactant. J. Comput. Phys. 263, 71–90 (2014)MathSciNetCrossRefMATH
18.
go back to reference Zhang, Z., Xu, S., Ren, W.: Derivation of a continuum model and the energy law for moving contact lines with insoluble surfactants. Phys. Fluids 26, 062103 (2014)CrossRef Zhang, Z., Xu, S., Ren, W.: Derivation of a continuum model and the energy law for moving contact lines with insoluble surfactants. Phys. Fluids 26, 062103 (2014)CrossRef
19.
go back to reference Xu, J.-J., Li, Z., Lowengrub, J., Zhao, H.: A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212, 590–616 (2006)MathSciNetCrossRefMATH Xu, J.-J., Li, Z., Lowengrub, J., Zhao, H.: A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212, 590–616 (2006)MathSciNetCrossRefMATH
20.
go back to reference Xu, J.-J., Yang, Y., Lowengrub, J.: A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231, 5897–5909 (2012)MathSciNetCrossRef Xu, J.-J., Yang, Y., Lowengrub, J.: A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231, 5897–5909 (2012)MathSciNetCrossRef
21.
go back to reference Kou, J., Sun, S.: Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility. Comput. Methods Appl. Mech. Eng. 331, 623–649 (2018)MathSciNetCrossRef Kou, J., Sun, S.: Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility. Comput. Methods Appl. Mech. Eng. 331, 623–649 (2018)MathSciNetCrossRef
22.
go back to reference Zhu, G., Yao, J., Li, A., Sun, H., Zhang, L.: Pore-scale investigation of carbon dioxide-enhanced oil recovery. Energy Fuels 31, 5324–5332 (2017)CrossRef Zhu, G., Yao, J., Li, A., Sun, H., Zhang, L.: Pore-scale investigation of carbon dioxide-enhanced oil recovery. Energy Fuels 31, 5324–5332 (2017)CrossRef
23.
go back to reference Tóth, G.I., Kvamme, B.: Analysis of Ginzburg–Landau-type models of surfactant-assisted liquid phase separation. Phys. Rev. E 91, 032404 (2015)CrossRef Tóth, G.I., Kvamme, B.: Analysis of Ginzburg–Landau-type models of surfactant-assisted liquid phase separation. Phys. Rev. E 91, 032404 (2015)CrossRef
24.
go back to reference Teng, C.-H., Chern, I.-L., Lai M.-C.: Simulating binary fluid-surfactant dynamics by a phase field model. Discrete and Continuous Dynamical Systems-Series B, Special issue for FAN2010 in honor of J. Thomas Beale (in press) (2012) Teng, C.-H., Chern, I.-L., Lai M.-C.: Simulating binary fluid-surfactant dynamics by a phase field model. Discrete and Continuous Dynamical Systems-Series B, Special issue for FAN2010 in honor of J. Thomas Beale (in press) (2012)
25.
go back to reference Yu, H., Yang, X.: Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665–686 (2017)MathSciNetCrossRefMATH Yu, H., Yang, X.: Numerical approximations for a phase-field moving contact line model with variable densities and viscosities. J. Comput. Phys. 334, 665–686 (2017)MathSciNetCrossRefMATH
26.
go back to reference Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)MathSciNetCrossRefMATH Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)MathSciNetCrossRefMATH
27.
go back to reference Kou, J., Sun, S.: An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces. J. Comput. Appl. Math. 255, 593–604 (2014)MathSciNetCrossRefMATH Kou, J., Sun, S.: An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces. J. Comput. Appl. Math. 255, 593–604 (2014)MathSciNetCrossRefMATH
28.
go back to reference Zhu, G., Chen, H., Yao, J., Sun, S.: Efficient energy stable schemes for the hydrodynamics coupled phase-field model. Appl. Math. Model. 70, 82 (2018)MathSciNetCrossRef Zhu, G., Chen, H., Yao, J., Sun, S.: Efficient energy stable schemes for the hydrodynamics coupled phase-field model. Appl. Math. Model. 70, 82 (2018)MathSciNetCrossRef
29.
go back to reference Laradji, M., Guo, H., Grant, M., Zuckermann, M.J.: The effect of surfactants on the dynamics of phase separation. J. Phys. Condens. Matter 4, 6715 (1992)CrossRef Laradji, M., Guo, H., Grant, M., Zuckermann, M.J.: The effect of surfactants on the dynamics of phase separation. J. Phys. Condens. Matter 4, 6715 (1992)CrossRef
30.
go back to reference Komura, S., Kodama, H.: Two-order-parameter model for an oil-water-surfactant system. Phys. Rev. E 55, 1722 (1997)CrossRef Komura, S., Kodama, H.: Two-order-parameter model for an oil-water-surfactant system. Phys. Rev. E 55, 1722 (1997)CrossRef
31.
go back to reference Theissen, O., Gompper, G.: Lattice–Boltzmann study of spontaneous emulsification. Eur. Phys. J. B Condens. Matter Complex Syst. 11, 91–100 (1999)CrossRef Theissen, O., Gompper, G.: Lattice–Boltzmann study of spontaneous emulsification. Eur. Phys. J. B Condens. Matter Complex Syst. 11, 91–100 (1999)CrossRef
32.
go back to reference Van der Sman, R., Van der Graaf, S.: Diffuse interface model of surfactant adsorption onto flat and droplet interfaces. Rheol. Acta 46, 3–11 (2006)CrossRef Van der Sman, R., Van der Graaf, S.: Diffuse interface model of surfactant adsorption onto flat and droplet interfaces. Rheol. Acta 46, 3–11 (2006)CrossRef
33.
go back to reference Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Decoupled, energy stable schemes for a phase-field surfactant model. Comput. Phys. Commun. 233, 67 (2018)MathSciNetCrossRef Zhu, G., Kou, J., Sun, S., Yao, J., Li, A.: Decoupled, energy stable schemes for a phase-field surfactant model. Comput. Phys. Commun. 233, 67 (2018)MathSciNetCrossRef
34.
go back to reference Engblom, S., Do-Quang, M., Amberg, G., Tornberg, A.-K.: On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Commun. Computat. Phys. 14, 879–915 (2013)MathSciNetCrossRefMATH Engblom, S., Do-Quang, M., Amberg, G., Tornberg, A.-K.: On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Commun. Computat. Phys. 14, 879–915 (2013)MathSciNetCrossRefMATH
35.
go back to reference Garcke, H., Lam, K.F., Stinner, B.: Diffuse interface modelling of soluble surfactants in two-phase flow (2013). arXiv preprint arXiv:1303.2559 Garcke, H., Lam, K.F., Stinner, B.: Diffuse interface modelling of soluble surfactants in two-phase flow (2013). arXiv preprint arXiv:​1303.​2559
36.
go back to reference Pätzold, G., Dawson, K.: Numerical simulation of phase separation in the presence of surfactants and hydrodynamics. Phys. Rev. E 52, 6908 (1995)CrossRef Pätzold, G., Dawson, K.: Numerical simulation of phase separation in the presence of surfactants and hydrodynamics. Phys. Rev. E 52, 6908 (1995)CrossRef
37.
go back to reference Teigen, K.E., Song, P., Lowengrub, J., Voigt, A.: A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230, 375–393 (2011)MathSciNetCrossRefMATH Teigen, K.E., Song, P., Lowengrub, J., Voigt, A.: A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230, 375–393 (2011)MathSciNetCrossRefMATH
38.
go back to reference Gu, S., Zhang, H., Zhang, Z.: An energy-stable finite-difference scheme for the binary fluid-surfactant system. J. Comput. Phys. 270, 416–431 (2014)MathSciNetCrossRefMATH Gu, S., Zhang, H., Zhang, Z.: An energy-stable finite-difference scheme for the binary fluid-surfactant system. J. Comput. Phys. 270, 416–431 (2014)MathSciNetCrossRefMATH
39.
go back to reference Yun, A., Li, Y., Kim, J.: A new phase-field model for a water–oil-surfactant system. Appl. Math. Comput. 229, 422–432 (2014)MathSciNetMATH Yun, A., Li, Y., Kim, J.: A new phase-field model for a water–oil-surfactant system. Appl. Math. Comput. 229, 422–432 (2014)MathSciNetMATH
40.
go back to reference Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)MathSciNetCrossRef Yang, X., Ju, L.: Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)MathSciNetCrossRef
41.
go back to reference Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27, 1993–2030 (2017)MathSciNetCrossRefMATH Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27, 1993–2030 (2017)MathSciNetCrossRefMATH
42.
go back to reference Alpak, F.O., Riviere, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Comput. Geosci. 20, 881–908 (2016)MathSciNetCrossRefMATH Alpak, F.O., Riviere, B., Frank, F.: A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition. Comput. Geosci. 20, 881–908 (2016)MathSciNetCrossRefMATH
43.
go back to reference Frank, F., Liu, C., Alpak, F.O., Berg, S., Riviere, B.: Direct numerical simulation of flow on pore-scale images using the phase-field method. SPE J. (2018) Frank, F., Liu, C., Alpak, F.O., Berg, S., Riviere, B.: Direct numerical simulation of flow on pore-scale images using the phase-field method. SPE J. (2018)
44.
go back to reference Zhu, G., Yao, J., Sun, H., Zhang, M., Xie, M., Sun, Z., Tao, L.: The numerical simulation of thermal recovery based on hydraulic fracture heating technology in shale gas reservoir. J. Nat. Gas. Sci. Eng. 28, 305–316 (2016)CrossRef Zhu, G., Yao, J., Sun, H., Zhang, M., Xie, M., Sun, Z., Tao, L.: The numerical simulation of thermal recovery based on hydraulic fracture heating technology in shale gas reservoir. J. Nat. Gas. Sci. Eng. 28, 305–316 (2016)CrossRef
45.
go back to reference Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179, 211–228 (2003)MathSciNetCrossRefMATH Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179, 211–228 (2003)MathSciNetCrossRefMATH
46.
go back to reference Yang, X., Yu, H.: Linear, second order and unconditionally energy stable schemes for a phase-field moving contact line model (2017). arXiv preprint arXiv:1703.01311 Yang, X., Yu, H.: Linear, second order and unconditionally energy stable schemes for a phase-field moving contact line model (2017). arXiv preprint arXiv:​1703.​01311
47.
go back to reference Gao, M., Wang, X.-P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)MathSciNetCrossRefMATH Gao, M., Wang, X.-P.: A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231, 1372–1386 (2012)MathSciNetCrossRefMATH
48.
go back to reference Bao, K., Shi, Y., Sun, S., Wang, X.-P.: A finite element method for the numerical solution of the coupled Cahn–Hilliard and Navier–Stokes system for moving contact line problems. J. Comput. Phys. 231, 8083–8099 (2012)MathSciNetCrossRefMATH Bao, K., Shi, Y., Sun, S., Wang, X.-P.: A finite element method for the numerical solution of the coupled Cahn–Hilliard and Navier–Stokes system for moving contact line problems. J. Comput. Phys. 231, 8083–8099 (2012)MathSciNetCrossRefMATH
49.
go back to reference Kou, J., Sun, S.: Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng–Robinson equation of state. J. Comput. Phys. 371, 581–605 (2018)MathSciNetCrossRef Kou, J., Sun, S.: Thermodynamically consistent simulation of nonisothermal diffuse-interface two-phase flow with Peng–Robinson equation of state. J. Comput. Phys. 371, 581–605 (2018)MathSciNetCrossRef
50.
go back to reference Kou, J., Sun, S., Wang, X.: Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow. SIAM J. Numer. Anal. 56, 3219–3248 (2018)MathSciNetCrossRefMATH Kou, J., Sun, S., Wang, X.: Linearly decoupled energy-stable numerical methods for multicomponent two-phase compressible flow. SIAM J. Numer. Anal. 56, 3219–3248 (2018)MathSciNetCrossRefMATH
51.
go back to reference Copetti, M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63, 39–65 (1992)MathSciNetCrossRefMATH Copetti, M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63, 39–65 (1992)MathSciNetCrossRefMATH
52.
go back to reference Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetCrossRefMATH Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)MathSciNetCrossRefMATH
53.
go back to reference Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. J. Sci. Comput. 1–21 (2018) Cheng, Q., Shen, J., Yang, X.: Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. J. Sci. Comput. 1–21 (2018)
54.
go back to reference Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230, 5587–5609 (2011)MathSciNetCrossRefMATH Fjordholm, U.S., Mishra, S., Tadmor, E.: Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230, 5587–5609 (2011)MathSciNetCrossRefMATH
55.
go back to reference Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase complex fluids. SIAM J. Sci. Comput. 36, B122–B145 (2014)MathSciNetCrossRefMATH Shen, J., Yang, X.: Decoupled energy stable schemes for phase-field models of two-phase complex fluids. SIAM J. Sci. Comput. 36, B122–B145 (2014)MathSciNetCrossRefMATH
56.
go back to reference Chen, W., Wang, C., Wang, X., Wise, S.M.: A positivity-preserving, energy stable numerical scheme for the Cahn–Hilliard equation with logarithmic potential (2017). arXiv preprint arXiv:1712.03225 Chen, W., Wang, C., Wang, X., Wise, S.M.: A positivity-preserving, energy stable numerical scheme for the Cahn–Hilliard equation with logarithmic potential (2017). arXiv preprint arXiv:​1712.​03225
57.
go back to reference Chen, W., Feng, W., Zhang, L., Cui, C., Ma, X., Sun, Z., Liu, F., Zhang, K.: A fractal discrete fracture network model for history matching of naturally fractured reservoirs. Fractals 27, 1940008 (2018)MathSciNet Chen, W., Feng, W., Zhang, L., Cui, C., Ma, X., Sun, Z., Liu, F., Zhang, K.: A fractal discrete fracture network model for history matching of naturally fractured reservoirs. Fractals 27, 1940008 (2018)MathSciNet
58.
go back to reference Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)MathSciNetCrossRefMATH Diegel, A.E., Wang, C., Wang, X., Wise, S.M.: Convergence analysis and error estimates for a second order accurate finite element method for the Cahn–Hilliard–Navier–Stokes system. Numer. Math. 137, 495–534 (2017)MathSciNetCrossRefMATH
59.
go back to reference Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76, 539–571 (2007)MathSciNetCrossRefMATH Feng, X., He, Y., Liu, C.: Analysis of finite element approximations of a phase field model for two-phase fluids. Math. Comput. 76, 539–571 (2007)MathSciNetCrossRefMATH
60.
go back to reference Li, J., Yu, B., Wang, Y., Tang, Y., Wang, H.: Study on computational efficiency of composite schemes for convection–diffusion equations using single-grid and multigrid methods. J. Therm. Sci. Technol. 10, JTST0009–JTST0009 (2015)CrossRef Li, J., Yu, B., Wang, Y., Tang, Y., Wang, H.: Study on computational efficiency of composite schemes for convection–diffusion equations using single-grid and multigrid methods. J. Therm. Sci. Technol. 10, JTST0009–JTST0009 (2015)CrossRef
61.
go back to reference F. Moukalled, L. Mangani, M. Darwish, The finite volume method in computational fluid dynamics. An advanced introduction with OpenFOAM and Matlab, pp. 3–8 (2016) F. Moukalled, L. Mangani, M. Darwish, The finite volume method in computational fluid dynamics. An advanced introduction with OpenFOAM and Matlab, pp. 3–8 (2016)
Metadata
Title
Numerical Approximation of a Phase-Field Surfactant Model with Fluid Flow
Authors
Guangpu Zhu
Jisheng Kou
Shuyu Sun
Jun Yao
Aifen Li
Publication date
07-03-2019
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 1/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-019-00934-1

Other articles of this Issue 1/2019

Journal of Scientific Computing 1/2019 Go to the issue

Premium Partner