Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

23-08-2019 | Original Paper | Issue 3/2020

Numerical Algorithms 3/2020

Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method

Journal:
Numerical Algorithms > Issue 3/2020
Authors:
Shuying Zhai, Longyuan Wu, Jingying Wang, Zhifeng Weng
Important notes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this paper, we consider a fast explicit operator splitting method for a fractional Cahn-Hilliard equation with spatial derivative \((-{\varDelta })^{\frac {\alpha }{2}}\)(α ∈ (1,2]), where the choice α = 2 corresponds to the classical Cahn-Hilliard equation. The original problem is split into linear and nonlinear subproblems. For the linear part, the pseudo-spectral method is adopted, and thus an ordinary differential equation is obtained. For the nonlinear part, a second-order SSP-RK method together with the pseudo-spectral method is used. The stability and convergence of the proposed method in L2-norm are studied. We also carry out a comparative study of two classical definitions for fractional Laplacian \((-{\varDelta })^{\frac {\alpha }{2}}\), and numerical results obtained using computational simulation of the fractional Cahn-Hilliard equation for a variety of choices of fractional order α are presented. It is observed that the fractional order α controls the sharpness of the interface, which is typically diffusive in integer-order phase-field models.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2020

Numerical Algorithms 3/2020 Go to the issue

Premium Partner

    Image Credits