Skip to main content
Top
Published in: Numerical Algorithms 3/2020

23-08-2019 | Original Paper

Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method

Authors: Shuying Zhai, Longyuan Wu, Jingying Wang, Zhifeng Weng

Published in: Numerical Algorithms | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we consider a fast explicit operator splitting method for a fractional Cahn-Hilliard equation with spatial derivative \((-{\varDelta })^{\frac {\alpha }{2}}\)(α ∈ (1,2]), where the choice α = 2 corresponds to the classical Cahn-Hilliard equation. The original problem is split into linear and nonlinear subproblems. For the linear part, the pseudo-spectral method is adopted, and thus an ordinary differential equation is obtained. For the nonlinear part, a second-order SSP-RK method together with the pseudo-spectral method is used. The stability and convergence of the proposed method in L2-norm are studied. We also carry out a comparative study of two classical definitions for fractional Laplacian \((-{\varDelta })^{\frac {\alpha }{2}}\), and numerical results obtained using computational simulation of the fractional Cahn-Hilliard equation for a variety of choices of fractional order α are presented. It is observed that the fractional order α controls the sharpness of the interface, which is typically diffusive in integer-order phase-field models.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I: Interfacial energy. J. Chem. Phys. 28, 258 (1958)MATH Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I: Interfacial energy. J. Chem. Phys. 28, 258 (1958)MATH
2.
go back to reference Cahn, J., Hilliard, J.: Free energy of a nonuniform system. II: Thermodynamic basis. J. Chem. Phys. 30, 1121–1135 (1959) Cahn, J., Hilliard, J.: Free energy of a nonuniform system. II: Thermodynamic basis. J. Chem. Phys. 30, 1121–1135 (1959)
3.
go back to reference Chan, P.K., Rey, A.D.: A numerical method for the nonlinear Cahn-Hilliard equation with nonperiodic boundary conditions. Comp. Mater. Sci. 3, 377–392 (1995) Chan, P.K., Rey, A.D.: A numerical method for the nonlinear Cahn-Hilliard equation with nonperiodic boundary conditions. Comp. Mater. Sci. 3, 377–392 (1995)
4.
go back to reference Dolcetta, I.C., Vita, S.F., March, R.: Area-preserving curve-shortening flows: from phase separation to image processing. Interface Free Bound. 4, 325–343 (2002)MATHMathSciNet Dolcetta, I.C., Vita, S.F., March, R.: Area-preserving curve-shortening flows: from phase separation to image processing. Interface Free Bound. 4, 325–343 (2002)MATHMathSciNet
5.
go back to reference Sun, Z.Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comput. 64, 1463–1471 (1995)MATHMathSciNet Sun, Z.Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comput. 64, 1463–1471 (1995)MATHMathSciNet
6.
go back to reference Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)MATHMathSciNet Wise, S.M.: Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations. J. Sci. Comput. 44, 38–68 (2010)MATHMathSciNet
7.
go back to reference Li, Y.B., Lee, H.G., Xia, B.H., Kim, J.: A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation. Comput. Phys. Commun. 200, 108–116 (2016)MATHMathSciNet Li, Y.B., Lee, H.G., Xia, B.H., Kim, J.: A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation. Comput. Phys. Commun. 200, 108–116 (2016)MATHMathSciNet
8.
go back to reference Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26, 884–903 (1989)MATHMathSciNet Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation. SIAM J. Numer. Anal. 26, 884–903 (1989)MATHMathSciNet
9.
go back to reference Elliott, C.M., Ranner, T.: Evolving surface finite element method for the Cahn-Hilliard equation. Numer. Math. 129, 483–534 (2015)MATHMathSciNet Elliott, C.M., Ranner, T.: Evolving surface finite element method for the Cahn-Hilliard equation. Numer. Math. 129, 483–534 (2015)MATHMathSciNet
10.
go back to reference Yan, Y., Chen, W.B., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)MathSciNet Yan, Y., Chen, W.B., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation. Commun. Comput. Phys. 23, 572–602 (2018)MathSciNet
11.
go back to reference Shen, J., Yang, X.F.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28, 1669–1691 (2010)MATHMathSciNet Shen, J., Yang, X.F.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28, 1669–1691 (2010)MATHMathSciNet
12.
go back to reference Cheng, K.L., Wang, C., Wise, S.M., Yue, X.Y., second-order, A: weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083–1114 (2016)MATHMathSciNet Cheng, K.L., Wang, C., Wise, S.M., Yue, X.Y., second-order, A: weakly energy-stable pseudo-spectral scheme for the Cahn-Hilliard equation and its solution by the homogeneous linear iteration method. J. Sci. Comput. 69, 1083–1114 (2016)MATHMathSciNet
13.
go back to reference Li, D., Qiao, Z.H.: On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations. J. Sci. Comput. 70, 301–341 (2017)MATHMathSciNet Li, D., Qiao, Z.H.: On second order semi-implicit Fourier spectral methods for 2D Cahn-Hilliard equations. J. Sci. Comput. 70, 301–341 (2017)MATHMathSciNet
14.
go back to reference Felgueroso, L.C., Peraire, J.: A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations. J. Comput. Phys. 227, 9985–10017 (2008)MATHMathSciNet Felgueroso, L.C., Peraire, J.: A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations. J. Comput. Phys. 227, 9985–10017 (2008)MATHMathSciNet
15.
go back to reference Herrmann, R.: Fractional Calculus: An Introduction for Physicists, 2nd edn. World Scientific, River Edge (2014)MATH Herrmann, R.: Fractional Calculus: An Introduction for Physicists, 2nd edn. World Scientific, River Edge (2014)MATH
16.
go back to reference Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Wave Propagation. Impact and Variational Principles. ISTE Ltd, London (2014)MATH Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Wave Propagation. Impact and Variational Principles. ISTE Ltd, London (2014)MATH
17.
go back to reference Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn-Hilliard equation. SIAM J. Imaging Sci. 8, 2352–2382 (2015)MATHMathSciNet Bosch, J., Stoll, M.: A fractional inpainting model based on the vector-valued Cahn-Hilliard equation. SIAM J. Imaging Sci. 8, 2352–2382 (2015)MATHMathSciNet
18.
go back to reference Akag, G., Schimperna, G., Segatti, A.: Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equations 261, 2935–2985 (2016)MATHMathSciNet Akag, G., Schimperna, G., Segatti, A.: Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations. J. Differ. Equations 261, 2935–2985 (2016)MATHMathSciNet
19.
go back to reference Hu, Y., He, J.H.: On fractal space-time and fractional calculus. Therm. Sci. 20(3), 773–777 (2016)MathSciNet Hu, Y., He, J.H.: On fractal space-time and fractional calculus. Therm. Sci. 20(3), 773–777 (2016)MathSciNet
20.
go back to reference Ainsworth, M., Mao, Z.P.: Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos Soliton. Fract. 102, 264–273 (2017)MATHMathSciNet Ainsworth, M., Mao, Z.P.: Well-posedness of the Cahn-Hilliard equation with fractional free energy and its Fourier Galerkin approximation. Chaos Soliton. Fract. 102, 264–273 (2017)MATHMathSciNet
21.
go back to reference Yang, Q., Turner, I., Liu, F., Ili’c, M.: Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J. Sci. Comp. 33, 1159–1180 (2011) Yang, Q., Turner, I., Liu, F., Ili’c, M.: Novel numerical methods for solving the time-space fractional diffusion equation in 2D. SIAM J. Sci. Comp. 33, 1159–1180 (2011)
22.
go back to reference Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)MATHMathSciNet Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)MATHMathSciNet
23.
go back to reference Zhai, S.Y., Weng, Z.F., Feng, X.L.: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model. Appl. Math Model. 40, 1315–1324 (2016)MATHMathSciNet Zhai, S.Y., Weng, Z.F., Feng, X.L.: Fast explicit operator splitting method and time-step adaptivity for fractional non-local Allen-Cahn model. Appl. Math Model. 40, 1315–1324 (2016)MATHMathSciNet
24.
go back to reference Weng, Z.F., Zhai, S.Y., Feng, X.L.: A Fourier spectral method for fractional-in-space Cahn-Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)MATHMathSciNet Weng, Z.F., Zhai, S.Y., Feng, X.L.: A Fourier spectral method for fractional-in-space Cahn-Hilliard equation. Appl. Math. Model. 42, 462–477 (2017)MATHMathSciNet
25.
go back to reference Gottlieb, S., Shu, C.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)MATHMathSciNet Gottlieb, S., Shu, C.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)MATHMathSciNet
26.
go back to reference Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MATHMathSciNet Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MATHMathSciNet
27.
go back to reference Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising authors. J. Sci. Comput. 65, 249–270 (2015)MATHMathSciNet Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via hp-finite elements, with an application to image denoising authors. J. Sci. Comput. 65, 249–270 (2015)MATHMathSciNet
28.
go back to reference Song, F.Y., Xu, C.J., Karniadakis, G.E.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017)MATHMathSciNet Song, F.Y., Xu, C.J., Karniadakis, G.E.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017)MATHMathSciNet
29.
go back to reference Shen, S.J., Liu, F.W., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer Algorithms 56, 383–403 (2011)MATHMathSciNet Shen, S.J., Liu, F.W., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer Algorithms 56, 383–403 (2011)MATHMathSciNet
30.
go back to reference Zhao, X., Sun, Z.Z., Hao, Z.P.: A foyrth-order compact ADI scheme for two-dimensional nonlinear space fractional schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MATH Zhao, X., Sun, Z.Z., Hao, Z.P.: A foyrth-order compact ADI scheme for two-dimensional nonlinear space fractional schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)MATH
31.
go back to reference Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)MATHMathSciNet Ding, H.F., Li, C.P.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)MATHMathSciNet
32.
go back to reference Shen, J., Tang, T., Wang, L.L.: Spectral Methods Algorithms: Analyses and Applications, 1st edn. Springer, Berlin (2010) Shen, J., Tang, T., Wang, L.L.: Spectral Methods Algorithms: Analyses and Applications, 1st edn. Springer, Berlin (2010)
33.
go back to reference Ainsworth, M., Mao, Z.P.: Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)MATHMathSciNet Ainsworth, M., Mao, Z.P.: Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)MATHMathSciNet
34.
go back to reference Li, X., Qiao, Z.H., Zhang, H.: Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55, 265–285 (2017)MATHMathSciNet Li, X., Qiao, Z.H., Zhang, H.: Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55, 265–285 (2017)MATHMathSciNet
35.
go back to reference Mishra, S., Sv̈ard, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numer. Math. 50, 85–108 (2010)MathSciNet Mishra, S., Sv̈ard, M.: On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT Numer. Math. 50, 85–108 (2010)MathSciNet
36.
go back to reference Orovio, A.B., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)MATHMathSciNet Orovio, A.B., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)MATHMathSciNet
37.
go back to reference Chandru, M., Das, P., Ramos, H.: Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Math. Methods Appl. Sci. 41, 5359–5387 (2018)MATHMathSciNet Chandru, M., Das, P., Ramos, H.: Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Math. Methods Appl. Sci. 41, 5359–5387 (2018)MATHMathSciNet
38.
go back to reference Chandru, M., Prabha, T., Das, P., Shanthi, V.: A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms. Differ. Equ. Dyn. Syst. 27, 97–112 (2019)MATHMathSciNet Chandru, M., Prabha, T., Das, P., Shanthi, V.: A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms. Differ. Equ. Dyn. Syst. 27, 97–112 (2019)MATHMathSciNet
39.
go back to reference Das, P., Mehrmann, V.: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT Numer. Math. 56, 51–76 (2016)MATHMathSciNet Das, P., Mehrmann, V.: Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT Numer. Math. 56, 51–76 (2016)MATHMathSciNet
40.
go back to reference Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. 24, 452–477 (2018)MATHMathSciNet Das, P.: A higher order difference method for singularly perturbed parabolic partial differential equations. J. Differ. Equ. Appl. 24, 452–477 (2018)MATHMathSciNet
42.
go back to reference Das, P., Vigo-Aguiar, J.: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. 354, 533–544 (2019)MATHMathSciNet Das, P., Vigo-Aguiar, J.: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. 354, 533–544 (2019)MATHMathSciNet
43.
go back to reference Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems. Appl. Math. Comput. 249, 265–277 (2014)MATHMathSciNet Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems. Appl. Math. Comput. 249, 265–277 (2014)MATHMathSciNet
44.
go back to reference Das, P.: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J. Comput. Appl. Math. 290, 16–25 (2015)MATHMathSciNet Das, P.: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems. J. Comput. Appl. Math. 290, 16–25 (2015)MATHMathSciNet
45.
go back to reference Das, P., Natesan, S.: Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations. Int. J. Comput. Math. 92, 562–578 (2015)MATHMathSciNet Das, P., Natesan, S.: Adaptive mesh generation for singularly perturbed fourth-order ordinary differential equations. Int. J. Comput. Math. 92, 562–578 (2015)MATHMathSciNet
46.
go back to reference Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh. CMES Comput. Model. Eng. Sci. 90, 463–485 (2013)MATHMathSciNet Das, P., Natesan, S.: Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh. CMES Comput. Model. Eng. Sci. 90, 463–485 (2013)MATHMathSciNet
47.
go back to reference Das, P., Natesan, S.: Higher order parameter uniform convergent schemes for Robin type reaction diffusion problems using adaptively generated grid. Int. J. Comput. Meth. 9, 1250052 (2012)MATHMathSciNet Das, P., Natesan, S.: Higher order parameter uniform convergent schemes for Robin type reaction diffusion problems using adaptively generated grid. Int. J. Comput. Meth. 9, 1250052 (2012)MATHMathSciNet
48.
go back to reference Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230, 6037–6060 (2011)MATHMathSciNet Wodo, O., Ganapathysubramanian, B.: Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem. J. Comput. Phys. 230, 6037–6060 (2011)MATHMathSciNet
49.
go back to reference Zhang, Z.R., Ma, Y., Qiao, Z.H.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)MATHMathSciNet Zhang, Z.R., Ma, Y., Qiao, Z.H.: An adaptive time-stepping strategy for solving the phase field crystal model. J. Comput. Phys. 249, 204–215 (2013)MATHMathSciNet
50.
go back to reference Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)MATHMathSciNet Lubich, C.: On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77, 2141–2153 (2008)MATHMathSciNet
Metadata
Title
Numerical approximation of the fractional Cahn-Hilliard equation by operator splitting method
Authors
Shuying Zhai
Longyuan Wu
Jingying Wang
Zhifeng Weng
Publication date
23-08-2019
Publisher
Springer US
Published in
Numerical Algorithms / Issue 3/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00795-7

Other articles of this Issue 3/2020

Numerical Algorithms 3/2020 Go to the issue

Premium Partner