Skip to main content
Top
Published in: Acta Mechanica Sinica 4/2018

21-03-2018 | Research Paper

Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors

Authors: Yuwei Zhang, Zhansheng Guo

Published in: Acta Mechanica Sinica | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles \((\hbox {LiMn}_{2}\hbox {O}_{4})\) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Palacín, M.R., de Guibert, A.: Why do batteries fail? Science 351, 1253292 (2016)CrossRef Palacín, M.R., de Guibert, A.: Why do batteries fail? Science 351, 1253292 (2016)CrossRef
2.
go back to reference Chiang, Y.M.: Building a better battery. Nature 330, 1485–1486 (2010) Chiang, Y.M.: Building a better battery. Nature 330, 1485–1486 (2010)
3.
go back to reference Ebner, M., Marone, F., Stampanoni, M., et al.: Visualization and quantification of electrochemical and mechanical degradation in Li-ion batteries. Science 342, 716–720 (2013)CrossRef Ebner, M., Marone, F., Stampanoni, M., et al.: Visualization and quantification of electrochemical and mechanical degradation in Li-ion batteries. Science 342, 716–720 (2013)CrossRef
4.
go back to reference Nitta, N., Wu, F., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)CrossRef Nitta, N., Wu, F., Lee, J.T., et al.: Li-ion battery materials: present and future. Mater. Today 18, 252–264 (2015)CrossRef
5.
go back to reference Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)CrossRef Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)CrossRef
6.
go back to reference Xu, R., Zhao, K.: Electrochemomechanics of electrodes in Li-ion batteries: a review. J. Electrochem. Energy 13, 030803 (2016) Xu, R., Zhao, K.: Electrochemomechanics of electrodes in Li-ion batteries: a review. J. Electrochem. Energy 13, 030803 (2016)
7.
go back to reference Kabir, M.M., Demirocak, D.E.: Degradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res. 41, 1963–1986 (2017)CrossRef Kabir, M.M., Demirocak, D.E.: Degradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res. 41, 1963–1986 (2017)CrossRef
8.
go back to reference Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017)CrossRef Li, Y., Li, Y., Pei, A., et al.: Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017)CrossRef
9.
go back to reference Guo, Z.S., Zhu, J., Feng, J., et al.: Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv. 5, 69514–69521 (2015)CrossRef Guo, Z.S., Zhu, J., Feng, J., et al.: Direct in situ observation and explanation of lithium dendrite of commercial graphite electrodes. RSC Adv. 5, 69514–69521 (2015)CrossRef
10.
go back to reference Mukhopadhyay, A., Sheldon, B.W.: Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014)CrossRef Mukhopadhyay, A., Sheldon, B.W.: Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58–116 (2014)CrossRef
11.
go back to reference Lin, X., Lu, W.: A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application. J. Power Sources 357, 220–229 (2017)CrossRef Lin, X., Lu, W.: A battery model that enables consideration of realistic anisotropic environment surrounding an active material particle and its application. J. Power Sources 357, 220–229 (2017)CrossRef
12.
go back to reference Arora, P., White, R.E., Doyle, M.: Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998)CrossRef Arora, P., White, R.E., Doyle, M.: Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 145, 3647–3667 (1998)CrossRef
13.
go back to reference Deshpande, R., Verbrugge, M., Cheng, Y.T., et al.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730–A1738 (2012)CrossRef Deshpande, R., Verbrugge, M., Cheng, Y.T., et al.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730–A1738 (2012)CrossRef
14.
go back to reference Lee, S.W., Lee, H.W., Ryu, I., et al.: Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6, 7533 (2015)CrossRef Lee, S.W., Lee, H.W., Ryu, I., et al.: Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6, 7533 (2015)CrossRef
15.
go back to reference Christensen, J., Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019–A1030 (2005)CrossRef Christensen, J., Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019–A1030 (2005)CrossRef
16.
go back to reference Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)CrossRef Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293–319 (2006)CrossRef
17.
go back to reference Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910–A916 (2007)CrossRef Zhang, X., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910–A916 (2007)CrossRef
18.
go back to reference Cheng, Y.T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)CrossRef Cheng, Y.T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453–460 (2009)CrossRef
19.
go back to reference Korsunsky, A.M., Sui, T., Song, B.: Explicit formulae for the internal stress in spherical particles of active material within lithium ion battery cathodes during charging and discharging. Mater. Des. 69, 247–252 (2015)CrossRef Korsunsky, A.M., Sui, T., Song, B.: Explicit formulae for the internal stress in spherical particles of active material within lithium ion battery cathodes during charging and discharging. Mater. Des. 69, 247–252 (2015)CrossRef
20.
go back to reference Zhang, X., Hao, F., Chen, H., et al.: Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries. J. Electrochem. Soc. 161, A2243–A2249 (2014)CrossRef Zhang, X., Hao, F., Chen, H., et al.: Diffusion-induced stresses in transversely isotropic cylindrical electrodes of lithium-ion batteries. J. Electrochem. Soc. 161, A2243–A2249 (2014)CrossRef
21.
go back to reference Lu, Y., Ni, Y.: Stress-mediated lithiation in nanoscale phase transformation electrodes. Acta Mech. Solida Sin. 30, 248–253 (2017)CrossRef Lu, Y., Ni, Y.: Stress-mediated lithiation in nanoscale phase transformation electrodes. Acta Mech. Solida Sin. 30, 248–253 (2017)CrossRef
23.
go back to reference Zhu, M., Park, J., Sastry, A.M.: Fracture analysis of the cathode in Li-ion batteries: a simulation study. J. Electrochem. Soc. 159, A492–A498 (2012)CrossRef Zhu, M., Park, J., Sastry, A.M.: Fracture analysis of the cathode in Li-ion batteries: a simulation study. J. Electrochem. Soc. 159, A492–A498 (2012)CrossRef
24.
go back to reference Grantab, R., Shenoy, V.B.: Pressure-gradient dependent diffusion and crack propagation in lithiated silicon nanowires. J. Electrochem. Soc. 159, A584–A591 (2012)CrossRef Grantab, R., Shenoy, V.B.: Pressure-gradient dependent diffusion and crack propagation in lithiated silicon nanowires. J. Electrochem. Soc. 159, A584–A591 (2012)CrossRef
25.
go back to reference Klinsmann, M., Rosato, D., Kamlah, M., et al.: Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J. Mech. Phys. Solids 92, 313–344 (2016)CrossRef Klinsmann, M., Rosato, D., Kamlah, M., et al.: Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J. Mech. Phys. Solids 92, 313–344 (2016)CrossRef
26.
go back to reference Klinsmann, M., Rosato, D., Kamlah, M., et al.: Modeling crack growth during Li extraction and insertion within the second half cycle. J. Power Sources 331, 32–42 (2016)CrossRef Klinsmann, M., Rosato, D., Kamlah, M., et al.: Modeling crack growth during Li extraction and insertion within the second half cycle. J. Power Sources 331, 32–42 (2016)CrossRef
27.
go back to reference Zhao, K., Pharr, M., Vlassak, J.J., et al.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010)CrossRef Zhao, K., Pharr, M., Vlassak, J.J., et al.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010)CrossRef
28.
go back to reference Woodford, W.H., Chiang, Y.M., Carter, W.C.: "Electrochemical shock" of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010)CrossRef Woodford, W.H., Chiang, Y.M., Carter, W.C.: "Electrochemical shock" of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157, A1052–A1059 (2010)CrossRef
29.
go back to reference Woodford, W.H., Carter, W.C., Chiang, Y.M.: Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012)CrossRef Woodford, W.H., Carter, W.C., Chiang, Y.M.: Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5, 8014–8024 (2012)CrossRef
30.
go back to reference Gao, Y.F., Zhou, M.: Coupled mechano-diffusional driving forces for fracture in electrode materials. J. Power Sources 230, 176–193 (2013)CrossRef Gao, Y.F., Zhou, M.: Coupled mechano-diffusional driving forces for fracture in electrode materials. J. Power Sources 230, 176–193 (2013)CrossRef
31.
32.
go back to reference Wang, H., Jang, Y.I., Huang, B., et al.: TEM study of electrochemical cycling-induced damage and disorder in \(\text{ LiCoO }_{2}\) cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146, 473–480 (1999)CrossRef Wang, H., Jang, Y.I., Huang, B., et al.: TEM study of electrochemical cycling-induced damage and disorder in \(\text{ LiCoO }_{2}\) cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146, 473–480 (1999)CrossRef
33.
go back to reference Lim, M.R., Cho, W.I., Kim, K.B.: Preparation and characterization of gold-codeposited \(\text{ LiMn }_{2}\text{ O }_{4}\) electrodes. J. Power Sources 92, 168–176 (2001)CrossRef Lim, M.R., Cho, W.I., Kim, K.B.: Preparation and characterization of gold-codeposited \(\text{ LiMn }_{2}\text{ O }_{4}\) electrodes. J. Power Sources 92, 168–176 (2001)CrossRef
34.
go back to reference Ohzuku, T., Tomura, H., Sawai, K.: Monitoring of particle fracture by acoustic emission during charge and discharge of \(\text{ Li }/\text{ MnO }_{2}\) cells. J. Electrochem. Soc. 144, 3496–3500 (1997)CrossRef Ohzuku, T., Tomura, H., Sawai, K.: Monitoring of particle fracture by acoustic emission during charge and discharge of \(\text{ Li }/\text{ MnO }_{2}\) cells. J. Electrochem. Soc. 144, 3496–3500 (1997)CrossRef
35.
go back to reference Gabrisch, H., Wilcox, J., Doeff, M.M.: TEM study of fracturing in spherical and plate-like \(\text{ LiFePO }_{4}\) particles. Electrochem. Solid State Lett. 11, A25–A29 (2008)CrossRef Gabrisch, H., Wilcox, J., Doeff, M.M.: TEM study of fracturing in spherical and plate-like \(\text{ LiFePO }_{4}\) particles. Electrochem. Solid State Lett. 11, A25–A29 (2008)CrossRef
36.
go back to reference Wang, D., Wu, X., Wang, Z., et al.: Cracking causing cyclic instability of LiFePO\(_{4}\) cathode material. J. Power Sources 140, 125–128 (2005)CrossRef Wang, D., Wu, X., Wang, Z., et al.: Cracking causing cyclic instability of LiFePO\(_{4}\) cathode material. J. Power Sources 140, 125–128 (2005)CrossRef
37.
go back to reference Liu, X.H., Zhong, L., Huang, S., et al.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012)CrossRef Liu, X.H., Zhong, L., Huang, S., et al.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012)CrossRef
38.
go back to reference Lin, N., Jia, Z., Wang, Z., et al.: Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy. J. Power Sources 365, 235–239 (2017)CrossRef Lin, N., Jia, Z., Wang, Z., et al.: Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam-scanning electron microscopy. J. Power Sources 365, 235–239 (2017)CrossRef
39.
go back to reference Zhang, H.L., Li, F., Liu, C., et al.: New insight into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B 109, 22205–22211 (2005)CrossRef Zhang, H.L., Li, F., Liu, C., et al.: New insight into the solid electrolyte interphase with use of a focused ion beam. J. Phys. Chem. B 109, 22205–22211 (2005)CrossRef
40.
go back to reference Takahashi, K., Srinivasan, V.: Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J. Electrochem. Soc. 162, A635–A645 (2015)CrossRef Takahashi, K., Srinivasan, V.: Examination of graphite particle cracking as a failure mode in lithium-ion batteries: a model-experimental study. J. Electrochem. Soc. 162, A635–A645 (2015)CrossRef
41.
go back to reference Ebner, M., Geldmacher, F., Marone, F., et al.: X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3, 845–850 (2013)CrossRef Ebner, M., Geldmacher, F., Marone, F., et al.: X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3, 845–850 (2013)CrossRef
42.
go back to reference Bhattacharya, S., Riahi, A.R., Alpas, A.T.: A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells. J. Power Sources 196, 8719–8727 (2011)CrossRef Bhattacharya, S., Riahi, A.R., Alpas, A.T.: A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells. J. Power Sources 196, 8719–8727 (2011)CrossRef
43.
go back to reference Choi, Y.S., Pharr, M., Kang, C.S., et al.: Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon. J. Power Sources 265, 160–165 (2014)CrossRef Choi, Y.S., Pharr, M., Kang, C.S., et al.: Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon. J. Power Sources 265, 160–165 (2014)CrossRef
44.
go back to reference Harris, S.J., Deshpande, R.D., Qi, Y., et al.: Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J. Mater. Res. 25, 1433–1440 (2015)CrossRef Harris, S.J., Deshpande, R.D., Qi, Y., et al.: Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J. Mater. Res. 25, 1433–1440 (2015)CrossRef
45.
go back to reference Hu, Y., Zhao, X., Suo, Z.: Averting cracks caused by insertion reaction in lithium-ion batteries. J. Mater. Res. 25, 1007–1010 (2011)CrossRef Hu, Y., Zhao, X., Suo, Z.: Averting cracks caused by insertion reaction in lithium-ion batteries. J. Mater. Res. 25, 1007–1010 (2011)CrossRef
46.
go back to reference He, X., Li, J., Cai, Y., et al.: Preparation of spherical spinel \(\text{ LiMn }_{2}{\text{ O }}_{4}\), cathode material for Li-ion batteries. Mater. Chem. Phys. 95, 105–108 (2006)CrossRef He, X., Li, J., Cai, Y., et al.: Preparation of spherical spinel \(\text{ LiMn }_{2}{\text{ O }}_{4}\), cathode material for Li-ion batteries. Mater. Chem. Phys. 95, 105–108 (2006)CrossRef
47.
go back to reference ABAQUS/Standard: Version 6.16. Hibbitt, Karlsson, Serensen, Inc. (2016) ABAQUS/Standard: Version 6.16. Hibbitt, Karlsson, Serensen, Inc. (2016)
48.
go back to reference Sun, G., Bhattacharya, S., Alpas, A.T.: Cyclic strain-induced crack growth in graphite during electrochemical testing in propylene carbonate-based Li-ion battery electrolytes. J. Mater. Sci. 53, 1297–1309 (2018)CrossRef Sun, G., Bhattacharya, S., Alpas, A.T.: Cyclic strain-induced crack growth in graphite during electrochemical testing in propylene carbonate-based Li-ion battery electrolytes. J. Mater. Sci. 53, 1297–1309 (2018)CrossRef
Metadata
Title
Numerical computation of central crack growth in an active particle of electrodes influenced by multiple factors
Authors
Yuwei Zhang
Zhansheng Guo
Publication date
21-03-2018
Publisher
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Published in
Acta Mechanica Sinica / Issue 4/2018
Print ISSN: 0567-7718
Electronic ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-018-0764-1

Other articles of this Issue 4/2018

Acta Mechanica Sinica 4/2018 Go to the issue

Premium Partners