Skip to main content
Top

2024 | OriginalPaper | Chapter

Numerical Computation of Risk Functionals in PDMP Risk Models

Authors : Lea Enzi, Stefan Thonhauser

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We analyze the ruin event in a Markovian insurance risk model. For actual computations of risk functionals, we sketch different numerical approaches and focus on assessing the performance of a quantization algorithm. Since by nature ruin should be a rare event, it is necessary to deploy a variance reduction technique based on a proper change of measure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, Hackensack, NJ (2010)CrossRef Asmussen, S., Albrecher, H.: Ruin Probabilities. World Scientific, Hackensack, NJ (2010)CrossRef
2.
go back to reference Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Springer, New York (2007)CrossRef Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Springer, New York (2007)CrossRef
3.
go back to reference Asmussen, S., Steffensen, M.: Risk and Insurance—A Graduate Text. Springer, Cham (2020)CrossRef Asmussen, S., Steffensen, M.: Risk and Insurance—A Graduate Text. Springer, Cham (2020)CrossRef
4.
go back to reference Brandejsky, A., de Saporta, B., Dufour, F.: Numerical method for expectations of piecewise deterministic Markov processes. Commun. Appl. Math. Comput. Sci. 7(1), 63–104 (2012)MathSciNetCrossRef Brandejsky, A., de Saporta, B., Dufour, F.: Numerical method for expectations of piecewise deterministic Markov processes. Commun. Appl. Math. Comput. Sci. 7(1), 63–104 (2012)MathSciNetCrossRef
5.
go back to reference Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. Ser. B 46(3), 353–388 (1984)CrossRef Davis, M.H.A.: Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. Ser. B 46(3), 353–388 (1984)CrossRef
6.
go back to reference Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall, London (1993)CrossRef Davis, M.H.A.: Markov Models and Optimization. Chapman & Hall, London (1993)CrossRef
7.
go back to reference De Saporta, B., Dufour, F., Zhang, H.: Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes: Application to Reliability. Wiley, Hoboken, NJ (2015)CrossRef De Saporta, B., Dufour, F., Zhang, H.: Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes: Application to Reliability. Wiley, Hoboken, NJ (2015)CrossRef
9.
go back to reference Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Springer, Berlin (2000)CrossRef Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions. Springer, Berlin (2000)CrossRef
10.
go back to reference Joe, S., Kuo, F.: Constructing Sobol sequences with better two-dimensional projections. SIAM. J. Sci. Comput. 30(5), 2635–2654 (2008)MathSciNetCrossRef Joe, S., Kuo, F.: Constructing Sobol sequences with better two-dimensional projections. SIAM. J. Sci. Comput. 30(5), 2635–2654 (2008)MathSciNetCrossRef
11.
go back to reference Kritzer, P., Leobacher, G., Szölgyenyi, M., Thonhauser, S.: Approximation methods for piecewise deterministic Markov processes and their costs. Scand. Actuar. J. 2019(4), 308–335 (2019)MathSciNetCrossRef Kritzer, P., Leobacher, G., Szölgyenyi, M., Thonhauser, S.: Approximation methods for piecewise deterministic Markov processes and their costs. Scand. Actuar. J. 2019(4), 308–335 (2019)MathSciNetCrossRef
12.
go back to reference Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Birkhäuser, Cham (2014)CrossRef Leobacher, G., Pillichshammer, F.: Introduction to Quasi-Monte Carlo Integration and Applications. Birkhäuser, Cham (2014)CrossRef
13.
go back to reference Pagès, G., Printems, J.: Optimal quadratic quantization for mumerics: the Gaussian case. Monte Carlo Methods Appl. 9(2), 135–165 (2003)MathSciNetCrossRef Pagès, G., Printems, J.: Optimal quadratic quantization for mumerics: the Gaussian case. Monte Carlo Methods Appl. 9(2), 135–165 (2003)MathSciNetCrossRef
14.
go back to reference Pagès, G., Pham, H., Printems, J.: Optimal quantization methods and applications to numerical problems in finance. In: Rachev, S.T. (ed.) Handbook of Computational and Numerical Methods in Finance, pp. 253–297. Birkhäuser, Boston, MA (2004) Pagès, G., Pham, H., Printems, J.: Optimal quantization methods and applications to numerical problems in finance. In: Rachev, S.T. (ed.) Handbook of Computational and Numerical Methods in Finance, pp. 253–297. Birkhäuser, Boston, MA (2004)
15.
go back to reference Palmowski, Z., Rolski, T.: A technique for exponential change of measure for Markov processes. Bernoulli 8(6), 767–785 (2002)MathSciNet Palmowski, Z., Rolski, T.: A technique for exponential change of measure for Markov processes. Bernoulli 8(6), 767–785 (2002)MathSciNet
16.
go back to reference Pausinger, F., Svane, A.M.: A Koksma-Hlawka inequality for general discrepancy systems. J. Complex. 31(6), 773–797 (2015)MathSciNetCrossRef Pausinger, F., Svane, A.M.: A Koksma-Hlawka inequality for general discrepancy systems. J. Complex. 31(6), 773–797 (2015)MathSciNetCrossRef
17.
go back to reference Preischl, M., Thonhauser, S., Tichy, R.F.: Integral equations, Quasi-Monte Carlo methods and risk modeling. In: Dick, J., Kuo, F., Woźniakowski, H. (eds.) Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 1051–1074. Springer, Cham (2018) Preischl, M., Thonhauser, S., Tichy, R.F.: Integral equations, Quasi-Monte Carlo methods and risk modeling. In: Dick, J., Kuo, F., Woźniakowski, H. (eds.) Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, pp. 1051–1074. Springer, Cham (2018)
18.
go back to reference Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999)CrossRef Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999)CrossRef
20.
go back to reference Wolfram Research, Inc.: Mathematica. Version 12.2, Champaign, IL (2020) Wolfram Research, Inc.: Mathematica. Version 12.2, Champaign, IL (2020)
Metadata
Title
Numerical Computation of Risk Functionals in PDMP Risk Models
Authors
Lea Enzi
Stefan Thonhauser
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_10

Premium Partner