Skip to main content
Top
Published in: Fire Technology 5/2017

25-04-2017

Numerical Investigation of Back-Layering Length and Critical Velocity in Curved Subway Tunnels with Different Turning Radius

Authors: Shaogang Zhang, Hui Yang, Yongzheng Yao, Kai Zhu, Yong Zhou, Long Shi, Xudong Cheng

Published in: Fire Technology | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Curved tunnels are inevitable subjected to the city underground geological conditions. Due to the catastrophic consequence of tunnel fires with high population density, the related researches on fire safety of curved tunnel are full of significance. Therefore, a series of curved subway tunnels with turning radius of 300–1000 m were investigated numerically by FDS 5.5.3 in terms of the smoke back-layering length and critical ventilation velocity under the heat release rate of 5–10 MW. Theoretical analysis shows that the curved tunnel with the local resistance has an advantage of preventing smoke spreading compared with straight tunnel. The simulation results also indicated that both the smoke back-layering length and the critical ventilation velocity increased with the rising turning radius, and the straight tunnel has the largest values. In fact, the local resistance impact factor for the smoke back-layering length in the curved tunnel, \( k_{f} \), was controlled by turning radius \( R \) and ventilation velocity \( V \). The dimensionless critical velocity increased slightly from \( 0.638Q^{*1/3} \) to \( 0.669Q^{*1/3} \) when the turning radius increased from 300 m to 1000 m. Without considering the influence of turning radius (local resistance), previous models cannot be applied to the curved tunnel. The improved prediction models about smoke back-layering length and critical velocity with the factor of turning radius could provide a technical guideline for the tunnel ventilation designs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ingason H, Li YZ, Lönnermark A (2014) Tunnel fire dynamics. Springer, Berlin Ingason H, Li YZ, Lönnermark A (2014) Tunnel fire dynamics. Springer, Berlin
2.
go back to reference Chen C-K, Zhu C-X, Liu X-Y, Yu N-H (2016) Experimental investigation on the effect of asymmetrical sealing on tunnel fire behavior. Int J Heat Mass Transf 92:55–65CrossRef Chen C-K, Zhu C-X, Liu X-Y, Yu N-H (2016) Experimental investigation on the effect of asymmetrical sealing on tunnel fire behavior. Int J Heat Mass Transf 92:55–65CrossRef
3.
go back to reference Gannouni S, Maad RB (2015) Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires. Tunn Undergr Sp Technol 48:147–155CrossRef Gannouni S, Maad RB (2015) Numerical study of the effect of blockage on critical velocity and backlayering length in longitudinally ventilated tunnel fires. Tunn Undergr Sp Technol 48:147–155CrossRef
4.
go back to reference Kang K (2010) Characteristic length scale of critical ventilation velocity in tunnel smoke control. Tunn Undergr Sp Technol 25 (3):205–211CrossRef Kang K (2010) Characteristic length scale of critical ventilation velocity in tunnel smoke control. Tunn Undergr Sp Technol 25 (3):205–211CrossRef
5.
go back to reference Tsai K-C, Chen H-H, Lee S-K (2010) Critical ventilation velocity for multi-source tunnel fires. J Wind Eng Ind Aerodyn 98 (10):650–660CrossRef Tsai K-C, Chen H-H, Lee S-K (2010) Critical ventilation velocity for multi-source tunnel fires. J Wind Eng Ind Aerodyn 98 (10):650–660CrossRef
6.
go back to reference Hu L, Huo R, Chow W (2008) Studies on buoyancy-driven back-layering flow in tunnel fires. Exp Therm Fluid Sci 32 (8):1468–1483CrossRef Hu L, Huo R, Chow W (2008) Studies on buoyancy-driven back-layering flow in tunnel fires. Exp Therm Fluid Sci 32 (8):1468–1483CrossRef
7.
go back to reference Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J 45 (6):361–370CrossRef Li YZ, Lei B, Ingason H (2010) Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Saf J 45 (6):361–370CrossRef
8.
go back to reference Tang W, Hu L, Chen L (2013) Effect of blockage-fire distance on buoyancy driven back-layering length and critical velocity in a tunnel: an experimental investigation and global correlations. Appl Therm Eng 60 (1):7–14CrossRef Tang W, Hu L, Chen L (2013) Effect of blockage-fire distance on buoyancy driven back-layering length and critical velocity in a tunnel: an experimental investigation and global correlations. Appl Therm Eng 60 (1):7–14CrossRef
9.
go back to reference Chen L, Hu L, Zhang X, Zhang X, Zhang X, Yang L (2014) Thermal buoyant smoke back-layering flow length in a longitudinal ventilated tunnel with ceiling extraction at difference distance from heat source. Appl Therm Eng 78:129–135CrossRef Chen L, Hu L, Zhang X, Zhang X, Zhang X, Yang L (2014) Thermal buoyant smoke back-layering flow length in a longitudinal ventilated tunnel with ceiling extraction at difference distance from heat source. Appl Therm Eng 78:129–135CrossRef
10.
go back to reference Weng MC, Lu XL, Liu F, Shi XP, Yu LX (2015) Prediction of backlayering length and critical velocity in metro tunnel fires. Tunn Undergr Sp Technol 47:64–72CrossRef Weng MC, Lu XL, Liu F, Shi XP, Yu LX (2015) Prediction of backlayering length and critical velocity in metro tunnel fires. Tunn Undergr Sp Technol 47:64–72CrossRef
11.
go back to reference Thomas P (1958) The movement of buoyant fluid against a stream and the venting of underground fires. Fire Res Note 351:1 Thomas P (1958) The movement of buoyant fluid against a stream and the venting of underground fires. Fire Res Note 351:1
12.
go back to reference Heselden A (1978) Studies of fire and smoke behaviour relevant to tunnels. Building Research Establishment, Fire Research Station Heselden A (1978) Studies of fire and smoke behaviour relevant to tunnels. Building Research Establishment, Fire Research Station
13.
go back to reference Danziger N, Kennedy W (1982) Longitudinal ventilation analysis for the Glenwood canyon tunnels. In: Proceedings of the fourth international symposium aerodynamics and ventilation of vehicle tunnels, pp 169–186 Danziger N, Kennedy W (1982) Longitudinal ventilation analysis for the Glenwood canyon tunnels. In: Proceedings of the fourth international symposium aerodynamics and ventilation of vehicle tunnels, pp 169–186
14.
go back to reference Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Saf J 25 (4):305–322CrossRef Oka Y, Atkinson GT (1995) Control of smoke flow in tunnel fires. Fire Saf J 25 (4):305–322CrossRef
15.
go back to reference Wu Y, Bakar MA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems–a study of the critical velocity. Fire Saf J 35 (4):363–390CrossRef Wu Y, Bakar MA (2000) Control of smoke flow in tunnel fires using longitudinal ventilation systems–a study of the critical velocity. Fire Saf J 35 (4):363–390CrossRef
16.
go back to reference Zhong W, Li Z, Wang T, Liang T, Liu Z (2015) Experimental study on the influence of different transverse fire locations on the critical longitudinal ventilation velocity in tunnel fires. Fire Technol 51 (5):1217–1230CrossRef Zhong W, Li Z, Wang T, Liang T, Liu Z (2015) Experimental study on the influence of different transverse fire locations on the critical longitudinal ventilation velocity in tunnel fires. Fire Technol 51 (5):1217–1230CrossRef
17.
go back to reference Zhong W, Duanmu W, Wang T, Liang T (2017) A study of the critical velocity of smoke bifurcation flow in tunnel with longitudinal ventilation. Fire Technol 53 (2):1–19CrossRef Zhong W, Duanmu W, Wang T, Liang T (2017) A study of the critical velocity of smoke bifurcation flow in tunnel with longitudinal ventilation. Fire Technol 53 (2):1–19CrossRef
18.
go back to reference Li YZ, Lei B, Ingason H (2014) Theoretical and experimental study of critical velocity for smoke control in a tunnel cross-passage. Fire Technol 50 (5):1325–1325. doi:10.1007/s10694-013-0347-4CrossRef Li YZ, Lei B, Ingason H (2014) Theoretical and experimental study of critical velocity for smoke control in a tunnel cross-passage. Fire Technol 50 (5):1325–1325. doi:10.1007/s10694-013-0347-4CrossRef
19.
go back to reference Chow W, Gao Y, Zhao J, Dang J, Chow C, Miao L (2015) Smoke movement in tilted tunnel fires with longitudinal ventilation. Fire Saf J 75:14–22CrossRef Chow W, Gao Y, Zhao J, Dang J, Chow C, Miao L (2015) Smoke movement in tilted tunnel fires with longitudinal ventilation. Fire Saf J 75:14–22CrossRef
20.
go back to reference Bailey J, Forney GP, Tatem P, Jones W (2002) Development and validation of corridor flow submodel for CFAST. J Fire Prot Eng 12 (3):139–161CrossRef Bailey J, Forney GP, Tatem P, Jones W (2002) Development and validation of corridor flow submodel for CFAST. J Fire Prot Eng 12 (3):139–161CrossRef
21.
go back to reference Kunsch J (1998) Critical velocity and range of a fire-gas plume in a ventilated tunnel. Atmos Environ 33 (1):13–24CrossRef Kunsch J (1998) Critical velocity and range of a fire-gas plume in a ventilated tunnel. Atmos Environ 33 (1):13–24CrossRef
22.
go back to reference Kurioka H, Oka Y, Satoh H, Sugawa O (2003) Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Saf J 38 (4):319–340CrossRef Kurioka H, Oka Y, Satoh H, Sugawa O (2003) Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Saf J 38 (4):319–340CrossRef
23.
go back to reference McGrattan K, Hostikka S, Floyd JE (2013) Fire dynamics simulator, user’s guide. NIST special publication 1019 McGrattan K, Hostikka S, Floyd JE (2013) Fire dynamics simulator, user’s guide. NIST special publication 1019
24.
go back to reference Ji J, Wan H, Li K, Han J, Sun J (2015) A numerical study on upstream maximum temperature in inclined urban road tunnel fires. Int J Heat Mass Transf 88:516–526CrossRef Ji J, Wan H, Li K, Han J, Sun J (2015) A numerical study on upstream maximum temperature in inclined urban road tunnel fires. Int J Heat Mass Transf 88:516–526CrossRef
26.
go back to reference Wang F, Wang M (2016) A computational study on effects of fire location on smoke movement in a road tunnel. Tunn Undergr Sp Technol 51:405–413CrossRef Wang F, Wang M (2016) A computational study on effects of fire location on smoke movement in a road tunnel. Tunn Undergr Sp Technol 51:405–413CrossRef
27.
go back to reference Yu LX, Beji T, Zadeh SE, Liu F, Merci B (2016) Simulations of smoke flow fields in a wind tunnel under the effect of an air curtain for smoke confinement. Fire Technol 52 (6):2007–2026CrossRef Yu LX, Beji T, Zadeh SE, Liu F, Merci B (2016) Simulations of smoke flow fields in a wind tunnel under the effect of an air curtain for smoke confinement. Fire Technol 52 (6):2007–2026CrossRef
28.
go back to reference McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST special publication 1018 McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, Overholt K (2013) Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST special publication 1018
29.
go back to reference McDermott R, McGrattan K, Hostikka S (2008) Fire dynamics simulator (version 5) technical reference guide. NIST Spec Publ 1018:27–35 McDermott R, McGrattan K, Hostikka S (2008) Fire dynamics simulator (version 5) technical reference guide. NIST Spec Publ 1018:27–35
30.
go back to reference Lei W, Li A, Yang J, Gao R, Deng B (2014) Simulation of the natural smoke filling in subway tunnel fire. In: Proceedings of the 8th international symposium on heating, ventilation and air conditioning. Springer, pp 29–36 Lei W, Li A, Yang J, Gao R, Deng B (2014) Simulation of the natural smoke filling in subway tunnel fire. In: Proceedings of the 8th international symposium on heating, ventilation and air conditioning. Springer, pp 29–36
32.
go back to reference Baum H, McCaffrey B (1989) Fire induced flow field–theory and experiment. In: Fire safety science–proceedings of the second international symposium. Hemisphere Publishing Newport, Australia, pp 129–148 Baum H, McCaffrey B (1989) Fire induced flow field–theory and experiment. In: Fire safety science–proceedings of the second international symposium. Hemisphere Publishing Newport, Australia, pp 129–148
33.
go back to reference Wang YF, Sun XF, Liu S, Yan PN, Qin T, Zhang B (2016) Simulation of back-layering length in tunnel fire with vertical shafts. Appl Therm Eng 109:344–350CrossRef Wang YF, Sun XF, Liu S, Yan PN, Qin T, Zhang B (2016) Simulation of back-layering length in tunnel fire with vertical shafts. Appl Therm Eng 109:344–350CrossRef
34.
go back to reference Hu L, Fong N, Yang L, Chow W, Li Y, Huo R (2007) Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data. J Hazard Mater 140 (1):293–298CrossRef Hu L, Fong N, Yang L, Chow W, Li Y, Huo R (2007) Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel: fire dynamics simulator comparisons with measured data. J Hazard Mater 140 (1):293–298CrossRef
Metadata
Title
Numerical Investigation of Back-Layering Length and Critical Velocity in Curved Subway Tunnels with Different Turning Radius
Authors
Shaogang Zhang
Hui Yang
Yongzheng Yao
Kai Zhu
Yong Zhou
Long Shi
Xudong Cheng
Publication date
25-04-2017
Publisher
Springer US
Published in
Fire Technology / Issue 5/2017
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-017-0656-0

Other articles of this Issue 5/2017

Fire Technology 5/2017 Go to the issue