Skip to main content
Top
Published in: Emission Control Science and Technology 4/2018

10-09-2018

Numerical Investigation of the Effect of Hydrogen Addition on Methane Flame Velocity and Pollutant Emissions Using Several Detailed Reaction Mechanisms

Authors: Meryem Alaya, Ridha Ennetta, Rachid Said

Published in: Emission Control Science and Technology | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This research’s basic objective is the study of hydrogen addition effects on pollutant emissions like CO and CO2 and on the laminar velocity of a methane flame considering a detailed chemical kinetics. This numerical study was performed using the calculation code of the gas phase chemical kinetics ChemKin4.0. To do this, the internal combustion engine (ICE) model was used to simulate the CO and CO2 emissions and the flame speed calculation (FSC) model for calculating the laminar velocity for various detailed reaction mechanisms and under different mixing conditions of CH4 + H2 and at equivalence ratio values ranging from 0.6 to 1.4. Results were compared with various experimental data from the literature and very good concordance was observed for several of the detailed mechanisms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Boumeddane, B.: Investigations numériques de l’auto-inflammation des mélanges méthane/air en mode HCCI. 19ème Congrès Français de Mécanique, Marseille, France, 24–28 August (2009) Boumeddane, B.: Investigations numériques de l’auto-inflammation des mélanges méthane/air en mode HCCI. 19ème Congrès Français de Mécanique, Marseille, France, 24–28 August (2009)
2.
go back to reference Guo, H., Smallwood, G.J., Liu, F., Ju, Y., Gülder, Ö.L.: The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc. Combust. Inst. 30, 303–311 (2005)CrossRef Guo, H., Smallwood, G.J., Liu, F., Ju, Y., Gülder, Ö.L.: The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames. Proc. Combust. Inst. 30, 303–311 (2005)CrossRef
3.
go back to reference De Simio, L., Gambino, M. & Iannaccone, S.: Use of hydrogen-methane mixtures for heavy duty engines. 12th World INGV conference and exhibition (2010) De Simio, L., Gambino, M. & Iannaccone, S.: Use of hydrogen-methane mixtures for heavy duty engines. 12th World INGV conference and exhibition (2010)
4.
go back to reference Navarro, E., Leo, T.J., Corral, R.: CO2 emissions from a spark ignition engine operating on natural gas-hydrogen blends (HCNG). Appl. Energy. 101, 112–120 (2013)CrossRef Navarro, E., Leo, T.J., Corral, R.: CO2 emissions from a spark ignition engine operating on natural gas-hydrogen blends (HCNG). Appl. Energy. 101, 112–120 (2013)CrossRef
5.
go back to reference Askari, M.H., Hoseinalipour, S.M., Jazayeri, S.A., Baghsheikhi, M.: Effect of hydrogen addition to natural gas on homogeneous charge compression ignition combustion engines performance and emissions using a thermodynamic simulation. Int. J. Automot. Eng. 1(2), 43–52 (2011) Askari, M.H., Hoseinalipour, S.M., Jazayeri, S.A., Baghsheikhi, M.: Effect of hydrogen addition to natural gas on homogeneous charge compression ignition combustion engines performance and emissions using a thermodynamic simulation. Int. J. Automot. Eng. 1(2), 43–52 (2011)
6.
go back to reference Wall, J.: Effect of hydrogen enriched hydrocarbon combustion on emissions and performance. 17th Annual Natural Philosophy Alliance Conference, Long Beach, CA. 6(2), 1–7 (2010) Wall, J.: Effect of hydrogen enriched hydrocarbon combustion on emissions and performance. 17th Annual Natural Philosophy Alliance Conference, Long Beach, CA. 6(2), 1–7 (2010)
7.
go back to reference Nanthagopal, K., Subbarao, R., Elango, T., Baskar, P., Annamalai, K.: Hydrogen enriched compressed natural gas-a futuristic fuel for internal combustion engines. Therm. Sci. 15(4), 1145–1154 (2011)CrossRef Nanthagopal, K., Subbarao, R., Elango, T., Baskar, P., Annamalai, K.: Hydrogen enriched compressed natural gas-a futuristic fuel for internal combustion engines. Therm. Sci. 15(4), 1145–1154 (2011)CrossRef
8.
go back to reference Wallner, T., Henry, K.N., Peters, R.W.: The effects of blending hydrogen with methane on engine operation, efficiency and emissions. SAE International. In: 2007-01-0474 (2007) Wallner, T., Henry, K.N., Peters, R.W.: The effects of blending hydrogen with methane on engine operation, efficiency and emissions. SAE International. In: 2007-01-0474 (2007)
9.
go back to reference Sierens, R.: Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. J. Eng. Gas Turbines Power. 122(1), 135–140 (1999)CrossRef Sierens, R.: Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. J. Eng. Gas Turbines Power. 122(1), 135–140 (1999)CrossRef
10.
go back to reference Nabhani, N. & Sharifi, V.: Investigation on the combustion of hydrocarbon fuel enriched by hydrogen for a cleaner environment. International Conference on Chemical, Environ. Sci. Eng. (ICEEBS'2012, Pattaya, Thailand, July 28–29 (2012) Nabhani, N. & Sharifi, V.: Investigation on the combustion of hydrocarbon fuel enriched by hydrogen for a cleaner environment. International Conference on Chemical, Environ. Sci. Eng. (ICEEBS'2012, Pattaya, Thailand, July 28–29 (2012)
11.
go back to reference De Sanctis, S., Grimolizzi, L., Ogliari, S. & Galler, D.: Hydrogen enrichment of natural gas: impact on the internal combustion engine emissions. Energy: Production, Distribution and Conservation, Milan, Italy (2006) De Sanctis, S., Grimolizzi, L., Ogliari, S. & Galler, D.: Hydrogen enrichment of natural gas: impact on the internal combustion engine emissions. Energy: Production, Distribution and Conservation, Milan, Italy (2006)
12.
go back to reference Gersen, S.: Experimental study of the combustion properties of methane/hydrogen mixtures. PhD thesis, University of Groningen, The Netherlands (2007) Gersen, S.: Experimental study of the combustion properties of methane/hydrogen mixtures. PhD thesis, University of Groningen, The Netherlands (2007)
13.
go back to reference Hernández-Pérez, F.E., Groth, C.P.T., Gülder, Ö.L.: Large-eddy simulation of lean hydrogen-methane turbulent premixed flames in the methane-dominated regime. Int. J. Hydrog. Energy. 39(13), 7147–7157 (2014)CrossRef Hernández-Pérez, F.E., Groth, C.P.T., Gülder, Ö.L.: Large-eddy simulation of lean hydrogen-methane turbulent premixed flames in the methane-dominated regime. Int. J. Hydrog. Energy. 39(13), 7147–7157 (2014)CrossRef
14.
go back to reference Hora, T.S., Agarwal, A.K.: Experimental study of the composition of hydrogen enriched compressed natural gas on engine performance, combustion and emission characteristics. Fuel. 160, 470–478 (2015)CrossRef Hora, T.S., Agarwal, A.K.: Experimental study of the composition of hydrogen enriched compressed natural gas on engine performance, combustion and emission characteristics. Fuel. 160, 470–478 (2015)CrossRef
15.
go back to reference Kee, R.J., et al.: CHEMKIN Release 4.0.2. Reaction Design, San Diego (2005) Kee, R.J., et al.: CHEMKIN Release 4.0.2. Reaction Design, San Diego (2005)
17.
go back to reference Bourque, G., Healy, D., Curran, H.J., Zinner, C., Kalitan, D., de Vries, J., Aul, C. and Petersen, E.: Ignition and flame speed kinetics of two natural gas blends with high levels of heavier hydrocarbons. Proc. ASME Turbo Expo. 31051–1066 (2008) Bourque, G., Healy, D., Curran, H.J., Zinner, C., Kalitan, D., de Vries, J., Aul, C. and Petersen, E.: Ignition and flame speed kinetics of two natural gas blends with high levels of heavier hydrocarbons. Proc. ASME Turbo Expo. 31051–1066 (2008)
18.
go back to reference Wiliams, F.A.: Chemical-kinetic mechanisms for combustion applications. San Diego mechanism web page, mechanical and aerospace engineering (combustion research), University of California at San Diego. Retrieved from http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html/. Wiliams, F.A.: Chemical-kinetic mechanisms for combustion applications. San Diego mechanism web page, mechanical and aerospace engineering (combustion research), University of California at San Diego. Retrieved from http://​web.​eng.​ucsd.​edu/​mae/​groups/​combustion/​mechanism.​html/​.​
20.
go back to reference Heywood, J.B.: Internal combustion engines fundamentals. McGraw-Hill, New York (1988) Heywood, J.B.: Internal combustion engines fundamentals. McGraw-Hill, New York (1988)
21.
go back to reference Matynia, A., Molet, J., Roche, C., Idir, M., Persis, S.D., Pillier, L.: Measurement of OH concentration profiles by laser diagnostics and modeling in high-pressure counterflow premixed methane/air and biogas/air flames. Combust. Flame. 159, 3300e11 (2012) Matynia, A., Molet, J., Roche, C., Idir, M., Persis, S.D., Pillier, L.: Measurement of OH concentration profiles by laser diagnostics and modeling in high-pressure counterflow premixed methane/air and biogas/air flames. Combust. Flame. 159, 3300e11 (2012)
22.
go back to reference Wang, J.H., Huang, Z.H., Tang, C.L., Miao, H.Y., Wang, X.B.: Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. Int. J. Hydrog. Energy. 34, 1084e96 (2009) Wang, J.H., Huang, Z.H., Tang, C.L., Miao, H.Y., Wang, X.B.: Numerical study of the effect of hydrogen addition on methane-air mixtures combustion. Int. J. Hydrog. Energy. 34, 1084e96 (2009)
23.
go back to reference Hu, E.J., Huang, Z.H., He, J.J., Jin, C., Zheng, J.J.: Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. Int. J. Hydrog. Energy. 34, 4876e88 (2009) Hu, E.J., Huang, Z.H., He, J.J., Jin, C., Zheng, J.J.: Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. Int. J. Hydrog. Energy. 34, 4876e88 (2009)
24.
go back to reference Burbano, H.J., Amell, A.A., Garcia, J.M.: Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners. Int. J. Hydrog. Energy. 33, 3410e5 (2008)CrossRef Burbano, H.J., Amell, A.A., Garcia, J.M.: Effects of hydrogen addition to methane on the flame structure and CO emissions in atmospheric burners. Int. J. Hydrog. Energy. 33, 3410e5 (2008)CrossRef
25.
go back to reference Park, J.W., Oh, C.B.: Flame structure and global flame response to the equivalence ratios of interacting partially premixed methane and hydrogen flames. Int. J. Hydrog. Energy. 37(9), 7877–7888 (2012)CrossRef Park, J.W., Oh, C.B.: Flame structure and global flame response to the equivalence ratios of interacting partially premixed methane and hydrogen flames. Int. J. Hydrog. Energy. 37(9), 7877–7888 (2012)CrossRef
26.
go back to reference Curran, H. J.: Detailed Chemical Kinetic Mechanisms for Combustion. Proceedings of the European Combustion Meeting (2009) Curran, H. J.: Detailed Chemical Kinetic Mechanisms for Combustion. Proceedings of the European Combustion Meeting (2009)
27.
go back to reference Bovin P.: Reduced-kinetic mechanisms for hydrogen and syngas combustion including autoignition, PhD thesis, Escuela Politécnica Superior, Leganés, Spain (2011) Bovin P.: Reduced-kinetic mechanisms for hydrogen and syngas combustion including autoignition, PhD thesis, Escuela Politécnica Superior, Leganés, Spain (2011)
28.
go back to reference Huang, J.: Natural gas combustion under engine-relevant conditions. PhD Thesis, University of British Columbia, Canada (2006) Huang, J.: Natural gas combustion under engine-relevant conditions. PhD Thesis, University of British Columbia, Canada (2006)
29.
go back to reference Ying, Y., Liu, D.: Detailed influences of chemical effects of hydrogen as fuel additive on methane flame. Int. J. Hydrog. Energy. 40(9), 3777–3788 (2015)CrossRef Ying, Y., Liu, D.: Detailed influences of chemical effects of hydrogen as fuel additive on methane flame. Int. J. Hydrog. Energy. 40(9), 3777–3788 (2015)CrossRef
30.
go back to reference Ramaekers, W.J.S., Van Oijen, J.A., de Goey, L.P.H.: A priori testing of flamelet generated manifolds for turbulent partially premixed methane/air flames. Flow Turbul. Combust. 84(3), 439–458 (2010) Ramaekers, W.J.S., Van Oijen, J.A., de Goey, L.P.H.: A priori testing of flamelet generated manifolds for turbulent partially premixed methane/air flames. Flow Turbul. Combust. 84(3), 439–458 (2010)
31.
go back to reference Zsély, I.G.: Validation and optimization of detailed combustion mechanisms. COST Training School on the Analysis of Combustion Mechanisms, 4–7 July, Budapest, Hungary (2016) Zsély, I.G.: Validation and optimization of detailed combustion mechanisms. COST Training School on the Analysis of Combustion Mechanisms, 4–7 July, Budapest, Hungary (2016)
32.
go back to reference Li, O., Wang, T., Liu, Y., Wang, D.: Experimental study and kinetics modeling of partial oxidation reactions in heavily sooting laminar premixed methane flames. Chem. Eng. J. 207-208, 235–244 (2012)CrossRef Li, O., Wang, T., Liu, Y., Wang, D.: Experimental study and kinetics modeling of partial oxidation reactions in heavily sooting laminar premixed methane flames. Chem. Eng. J. 207-208, 235–244 (2012)CrossRef
33.
go back to reference Olm, C., Zsély, I.G., Varga, T., Curran, H.J., Turányi, T.: Comparison of the performance of several recent syngas combustion mechanisms. Combust. Flame. 162(5), 1793–1812 (2015) Olm, C., Zsély, I.G., Varga, T., Curran, H.J., Turányi, T.: Comparison of the performance of several recent syngas combustion mechanisms. Combust. Flame. 162(5), 1793–1812 (2015)
34.
go back to reference Acikgoz, B., Celik, C.: An experimental study on performance and emission characteristics of methane-hydrogen fuelled gasoline engine. Int. J. Hydrog. Energy. 37(23), 18492–18497 (2012)CrossRef Acikgoz, B., Celik, C.: An experimental study on performance and emission characteristics of methane-hydrogen fuelled gasoline engine. Int. J. Hydrog. Energy. 37(23), 18492–18497 (2012)CrossRef
35.
go back to reference Kahraman, N., Ceper, B., Akansu, S.O., Aydin, K.: Investigation of combustion characteristics and emissions in spark -ignition engine fuelled with natural gas-hydrogen blends. Int. J. Hydrog. Energy. 34(2), 1026–1034 (2009)CrossRef Kahraman, N., Ceper, B., Akansu, S.O., Aydin, K.: Investigation of combustion characteristics and emissions in spark -ignition engine fuelled with natural gas-hydrogen blends. Int. J. Hydrog. Energy. 34(2), 1026–1034 (2009)CrossRef
36.
go back to reference Akansu, S.O., Kahraman, N., Ceper, B.: Experimental study on a spark ignition engine fueled by methane-hydrogen mixtures. Int. J. Hydrog. Energy. 32(17), 4279–4284 (2007)CrossRef Akansu, S.O., Kahraman, N., Ceper, B.: Experimental study on a spark ignition engine fueled by methane-hydrogen mixtures. Int. J. Hydrog. Energy. 32(17), 4279–4284 (2007)CrossRef
37.
go back to reference Tanoue, K., Kido, H., Hamatake, T., Shimada, F.: Improving the turbulent combustion performance of lean methane mixture by hydrogen addition. Seoul 2000 FISITA World Automotive Congress, Seoul, Korea June 12–15 (2000) Tanoue, K., Kido, H., Hamatake, T., Shimada, F.: Improving the turbulent combustion performance of lean methane mixture by hydrogen addition. Seoul 2000 FISITA World Automotive Congress, Seoul, Korea June 12–15 (2000)
38.
go back to reference Huang, Z., Zhang, Y., Zeng, K., Liu, B., Wang, Q., Jiang, D.: Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame. 146(1-2), 302–311 (2006) Huang, Z., Zhang, Y., Zeng, K., Liu, B., Wang, Q., Jiang, D.: Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures. Combust. Flame. 146(1-2), 302–311 (2006)
39.
go back to reference Yu, C., Tang, C., Huang, Z.: Kinetic analysis of H2 addition effect on the laminar flame parameters of the C1-C4 n-alkane-air mixtures: from one step overall assumption to detailed reaction mechanism. Int. J. Hydrog. Energy. 40, 703–718 (2015)CrossRef Yu, C., Tang, C., Huang, Z.: Kinetic analysis of H2 addition effect on the laminar flame parameters of the C1-C4 n-alkane-air mixtures: from one step overall assumption to detailed reaction mechanism. Int. J. Hydrog. Energy. 40, 703–718 (2015)CrossRef
40.
go back to reference Law, C.K., Kwon, O.C.: Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation. Int. J. Hydrog. Energy. 29(8), 867–879 (2004)CrossRef Law, C.K., Kwon, O.C.: Effects of hydrocarbon substitution on atmospheric hydrogen-air flame propagation. Int. J. Hydrog. Energy. 29(8), 867–879 (2004)CrossRef
41.
go back to reference Ilbas, M., Crayford, A.P., Yilmaz, I., Bowen, P.J., Sired, N.: Laminar burning velocities of hydrogen–air and hydrogen–methane–air mixtures: an experimental study. Int. J. Hydrog. Energy. 31(12), 1768–1779 (2006)CrossRef Ilbas, M., Crayford, A.P., Yilmaz, I., Bowen, P.J., Sired, N.: Laminar burning velocities of hydrogen–air and hydrogen–methane–air mixtures: an experimental study. Int. J. Hydrog. Energy. 31(12), 1768–1779 (2006)CrossRef
42.
go back to reference Dirrenberger, P., Le Gall, H., Bounaceur, R., Herbinet, O., Glaud, P.A., Konnov, A., Battin-Leclerc, F.: Measurement of laminar flame velocity for components of natural gas. Energy Fuels : Am. Chem. Soc. 25(9), 3875–3884 (2011) Dirrenberger, P., Le Gall, H., Bounaceur, R., Herbinet, O., Glaud, P.A., Konnov, A., Battin-Leclerc, F.: Measurement of laminar flame velocity for components of natural gas. Energy Fuels : Am. Chem. Soc. 25(9), 3875–3884 (2011)
43.
go back to reference Haniff, M.S., Melvin, A., Smith, D.B., Williams, A.: The burning velocities of methane and SNG mixtures with air. J. Inst. Energ. 62(453), 229–236 (1989) Haniff, M.S., Melvin, A., Smith, D.B., Williams, A.: The burning velocities of methane and SNG mixtures with air. J. Inst. Energ. 62(453), 229–236 (1989)
44.
go back to reference Boushaki, T., Dhué, Y., Selle, L., Ferret, B., Poinsot, T.: Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: experimental and numerical analysis. Int. J. Hydrog. Energy. 37(11), 9412–9422 (2012)CrossRef Boushaki, T., Dhué, Y., Selle, L., Ferret, B., Poinsot, T.: Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: experimental and numerical analysis. Int. J. Hydrog. Energy. 37(11), 9412–9422 (2012)CrossRef
Metadata
Title
Numerical Investigation of the Effect of Hydrogen Addition on Methane Flame Velocity and Pollutant Emissions Using Several Detailed Reaction Mechanisms
Authors
Meryem Alaya
Ridha Ennetta
Rachid Said
Publication date
10-09-2018
Publisher
Springer International Publishing
Published in
Emission Control Science and Technology / Issue 4/2018
Print ISSN: 2199-3629
Electronic ISSN: 2199-3637
DOI
https://doi.org/10.1007/s40825-018-0098-2

Other articles of this Issue 4/2018

Emission Control Science and Technology 4/2018 Go to the issue

Special Issue: 2017 CLEERS October 3 - 5, Ann Arbor, MI, USA

Coating Distribution in a Commercial SCR Filter

Premium Partner