Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2020

16-07-2020 | Research Article-Civil Engineering

Numerical Investigation on the Deformational Behavior of Continuous Buried Pipelines Under Reverse Faulting

Authors: Amin Monshizadeh Naeen, Ehsan Seyedi Hosseininia

Published in: Arabian Journal for Science and Engineering | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Steel pipelines are vulnerable to the movements of active faults. Few studies focused on reverse faults. The deformational behavior of buried steel pipelines crossing an active reverse fault is investigated in this paper by applying 3D continuum finite element modeling. Numerical simulations indicate that local buckling (or wrinkling) mode of failure is more sensitive to the pipeline rather than tensile failure mode. The results were also confirmed by the experiment. Based on parametric studies, the pipeline capacity against failure can be significantly improved by reducing the burial depth and the pipe thickness ratio. Besides, the soil consistency around the pipe has a great effect on the behavior of buried pipelines. Furthermore, it is found out that the failed pipeline sections would be generated in longer distance from the fault plane as the soil behaves more softly or the pipeline is more flexible. These findings can lead the designers to have a safer and economic design of pipelines crossing reverse faulting zones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ariman, T.; Muleski, G.E.: A review of the response of buried pipelines under seismic excitations. Earthq. Eng. Struct. Dyn. 9, 133–152 (1981)CrossRef Ariman, T.; Muleski, G.E.: A review of the response of buried pipelines under seismic excitations. Earthq. Eng. Struct. Dyn. 9, 133–152 (1981)CrossRef
2.
go back to reference Katayama, T.; Isoyama, R.: Damage to Buried Distribution Pipelines During the Miyagiken-Oki Earthquake. In: Proceedings of Recent Advances in Lifeline Earthquake Engineering in Japan, ASME California, pp. 97–104, (1980) Katayama, T.; Isoyama, R.: Damage to Buried Distribution Pipelines During the Miyagiken-Oki Earthquake. In: Proceedings of Recent Advances in Lifeline Earthquake Engineering in Japan, ASME California, pp. 97–104, (1980)
3.
go back to reference Kitaura, M.; Miyajima, M.: Damage to water supply pipelines. Soils Found. 36, 325–333 (1996)CrossRef Kitaura, M.; Miyajima, M.: Damage to water supply pipelines. Soils Found. 36, 325–333 (1996)CrossRef
4.
go back to reference Liang, J.; Sun, S.: Site effects on seismic behavior of pipelines: a review. J. Press. Vessel Technol. 122, 469–475 (2000)CrossRef Liang, J.; Sun, S.: Site effects on seismic behavior of pipelines: a review. J. Press. Vessel Technol. 122, 469–475 (2000)CrossRef
5.
go back to reference O’Rourke, M.J.; Ayala, G.: Seismic damage to pipeline: case study. J. Transp. Eng. 116, 123–134 (1990)CrossRef O’Rourke, M.J.; Ayala, G.: Seismic damage to pipeline: case study. J. Transp. Eng. 116, 123–134 (1990)CrossRef
6.
go back to reference Ariman, T.: Buckling and rupture failure in pipelines due to large ground deformations. In: Wind and Seismic Effects: Proceedings of the 14th Joint Panel Conference of the US-Japan Cooperative Program in Natural Resources, US Dept. of Commerce, National Bureau of Standards,, pp. 259. (1983) Ariman, T.: Buckling and rupture failure in pipelines due to large ground deformations. In: Wind and Seismic Effects: Proceedings of the 14th Joint Panel Conference of the US-Japan Cooperative Program in Natural Resources, US Dept. of Commerce, National Bureau of Standards,, pp. 259. (1983)
7.
go back to reference McCaffrey, M.; O’Rourke, T.: Buried pipeline response to reverse faulting during the 1971 San Fernando Earthquake. ASME Press. Vessels Pip. 77(1983), 151–159 (1971) McCaffrey, M.; O’Rourke, T.: Buried pipeline response to reverse faulting during the 1971 San Fernando Earthquake. ASME Press. Vessels Pip. 77(1983), 151–159 (1971)
8.
go back to reference Moradi, M.; Rojhani, M.; Galandarzadeh, A.; Takada, S.: Centrifuge modeling of buried continuous pipelines subjected to normal faulting. Earthq. Eng. Eng. Vib. 12, 155–164 (2013)CrossRef Moradi, M.; Rojhani, M.; Galandarzadeh, A.; Takada, S.: Centrifuge modeling of buried continuous pipelines subjected to normal faulting. Earthq. Eng. Eng. Vib. 12, 155–164 (2013)CrossRef
9.
go back to reference O’Rourke, M.J.; Liu, X.: Response of buried pipelines subject to earthquake effects, MonographSeries, Multidisciplinary Center for Earthquake Engineering Research (MCEER) (1999) O’Rourke, M.J.; Liu, X.: Response of buried pipelines subject to earthquake effects, MonographSeries, Multidisciplinary Center for Earthquake Engineering Research (MCEER) (1999)
10.
go back to reference Rojhani, M.; Moradi, M.; Galandarzadeh, A.; Takada, S.: Centrifuge modeling of buried continuous pipelines subjected to reverse faulting. Can. Geotech. J. 49, 659–670 (2012)CrossRef Rojhani, M.; Moradi, M.; Galandarzadeh, A.; Takada, S.: Centrifuge modeling of buried continuous pipelines subjected to reverse faulting. Can. Geotech. J. 49, 659–670 (2012)CrossRef
11.
go back to reference Sun, S.: Earthquake damage to pipelines. In: Proceedings of 2nd U. S. National Conference on Earthquake Engineering, EERI, Stanford, pp. 61–67 (1979) Sun, S.: Earthquake damage to pipelines. In: Proceedings of 2nd U. S. National Conference on Earthquake Engineering, EERI, Stanford, pp. 61–67 (1979)
12.
13.
go back to reference Newmark, N.M.; Hall, W.J.: Pipeline Design to Resist Large Fault Displacement. In: Proceedings of U.S. National Conference on Earthquake Engineering, pp. 416–425. (1975) Newmark, N.M.; Hall, W.J.: Pipeline Design to Resist Large Fault Displacement. In: Proceedings of U.S. National Conference on Earthquake Engineering, pp. 416–425. (1975)
14.
go back to reference Kennedy, R.; Chow, A.; Williamson, R.: Fault movement effects on buried oil pipeline. Transp. Eng. J. ASCE 103(TE5), 617–633 (1977) Kennedy, R.; Chow, A.; Williamson, R.: Fault movement effects on buried oil pipeline. Transp. Eng. J. ASCE 103(TE5), 617–633 (1977)
15.
go back to reference ASCE, Guidelines for the seismic design of oil and gas pipeline systems, committee on gas and liquid fuel lifelines, pp. 150–228. (1984) ASCE, Guidelines for the seismic design of oil and gas pipeline systems, committee on gas and liquid fuel lifelines, pp. 150–228. (1984)
16.
go back to reference Wang, L.R.L.; Yeh, Y.H.: A refined seismic analysis and design of buried pipeline for fault movement. Earthq. Eng. Struct. Dyn. 13, 75–96 (1985)CrossRef Wang, L.R.L.; Yeh, Y.H.: A refined seismic analysis and design of buried pipeline for fault movement. Earthq. Eng. Struct. Dyn. 13, 75–96 (1985)CrossRef
17.
go back to reference Karamitros, D.; Bouckovalas, G.; Kouretzis, G.; Gkesouli, V.: An analytical method for strength verification of buried steel pipelines at normal fault crossings. Soil Dyn. Earthq. Eng. 31, 1452–1464 (2011)CrossRef Karamitros, D.; Bouckovalas, G.; Kouretzis, G.; Gkesouli, V.: An analytical method for strength verification of buried steel pipelines at normal fault crossings. Soil Dyn. Earthq. Eng. 31, 1452–1464 (2011)CrossRef
18.
go back to reference Karamitros, D.K.; Bouckovalas, G.D.; Kouretzis, G.P.: Stress analysis of buried steel pipelines at strike-slip fault crossings. Soil Dyn. Earthq. Eng. 27, 200–211 (2007)CrossRef Karamitros, D.K.; Bouckovalas, G.D.; Kouretzis, G.P.: Stress analysis of buried steel pipelines at strike-slip fault crossings. Soil Dyn. Earthq. Eng. 27, 200–211 (2007)CrossRef
19.
go back to reference Abdoun, T.H.; Ha, D.; O’Rourke, M.J.; Symans, M.D.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Factors influencing the behavior of buried pipelines subjected to earthquake faulting. Soil Dyn. Earthq. Eng. 29, 415–427 (2009)CrossRef Abdoun, T.H.; Ha, D.; O’Rourke, M.J.; Symans, M.D.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Factors influencing the behavior of buried pipelines subjected to earthquake faulting. Soil Dyn. Earthq. Eng. 29, 415–427 (2009)CrossRef
20.
go back to reference Ha, D.; Abdoun, T.H.; O’Rourke, M.J.; Symans, M.D.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones. J. Geotech. Geoenviron. Eng. 134, 1501–1515 (2008)CrossRef Ha, D.; Abdoun, T.H.; O’Rourke, M.J.; Symans, M.D.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones. J. Geotech. Geoenviron. Eng. 134, 1501–1515 (2008)CrossRef
21.
go back to reference O’Rourke, M.; Gadicherla, V.; Abdoun, T.: Centrifuge modeling of PGD response of buried pipe. Earthq. Eng. Eng. Vib. 4, 69–73 (2005)CrossRef O’Rourke, M.; Gadicherla, V.; Abdoun, T.: Centrifuge modeling of PGD response of buried pipe. Earthq. Eng. Eng. Vib. 4, 69–73 (2005)CrossRef
22.
go back to reference Hojat Jalali, H.; Rofooei, F.R.; Khajeh Ahmad Attari, N.: Performance of buried gas distribution pipelines subjected to reverse fault movement. J. Earthq. Eng. 22, 1068–1091 (2018)CrossRef Hojat Jalali, H.; Rofooei, F.R.; Khajeh Ahmad Attari, N.: Performance of buried gas distribution pipelines subjected to reverse fault movement. J. Earthq. Eng. 22, 1068–1091 (2018)CrossRef
23.
go back to reference Jalali, H.H.; Rofooei, F.R.; Attari, N.K.A.; Samadian, M.: Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines. Soil Dyn. Earthq. Eng. 86, 1–14 (2016)CrossRef Jalali, H.H.; Rofooei, F.R.; Attari, N.K.A.; Samadian, M.: Experimental and finite element study of the reverse faulting effects on buried continuous steel gas pipelines. Soil Dyn. Earthq. Eng. 86, 1–14 (2016)CrossRef
24.
go back to reference Rofooei, F.R.; Jalali, H.H.; Attari, N.K.A.; Kenarangi, H.; Samadian, M.: Parametric study of buried steel and high density polyethylene gas pipelines due to oblique-reverse faulting. Can. J. Civ. Eng. 42, 178–189 (2015)CrossRef Rofooei, F.R.; Jalali, H.H.; Attari, N.K.A.; Kenarangi, H.; Samadian, M.: Parametric study of buried steel and high density polyethylene gas pipelines due to oblique-reverse faulting. Can. J. Civ. Eng. 42, 178–189 (2015)CrossRef
25.
go back to reference Ariman, T.; Lee, B.-J.: Tension Bending Behavior of Buried Pipelines Under Large Ground Deformations in Active Faults. In: Lifeline Earthquake Engineering, ASCE, pp. 226–233. (1991) Ariman, T.; Lee, B.-J.: Tension Bending Behavior of Buried Pipelines Under Large Ground Deformations in Active Faults. In: Lifeline Earthquake Engineering, ASCE, pp. 226–233. (1991)
26.
go back to reference Meyersohn, W.D.: Analytical and design considerations for the seismic response of buried piplines. Cornell University, Ithaca (1991) Meyersohn, W.D.: Analytical and design considerations for the seismic response of buried piplines. Cornell University, Ithaca (1991)
27.
go back to reference Liu, X.; O’Rourke, M.J.: Behaviour of continuous pipeline subject to transverse PGD. Earthq. Eng. Struct. Dyn. 26, 989–1003 (1997)CrossRef Liu, X.; O’Rourke, M.J.: Behaviour of continuous pipeline subject to transverse PGD. Earthq. Eng. Struct. Dyn. 26, 989–1003 (1997)CrossRef
28.
go back to reference Far, M.S.: Discussion of “a semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings” by Liu et al. (2016). J. Nat. Gas Sci. Eng. 52, 432–433 (2018)CrossRef Far, M.S.: Discussion of “a semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings” by Liu et al. (2016). J. Nat. Gas Sci. Eng. 52, 432–433 (2018)CrossRef
29.
go back to reference Liu, X.; Zhang, H.; Han, Y.; Xia, M.; Zheng, W.: A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings. J. Nat. Gas Sci. Eng. 32, 465–475 (2016)CrossRef Liu, X.; Zhang, H.; Han, Y.; Xia, M.; Zheng, W.: A semi-empirical model for peak strain prediction of buried X80 steel pipelines under compression and bending at strike-slip fault crossings. J. Nat. Gas Sci. Eng. 32, 465–475 (2016)CrossRef
30.
go back to reference Takada, S.; Hassani, N.; Fukuda, K.: A new proposal for simplified design of buried steel pipes crossing active faults. Earthq. Eng. Struct. Dyn. 30, 1243–1257 (2001)CrossRef Takada, S.; Hassani, N.; Fukuda, K.: A new proposal for simplified design of buried steel pipes crossing active faults. Earthq. Eng. Struct. Dyn. 30, 1243–1257 (2001)CrossRef
31.
go back to reference Trifonov, O.V.: Numerical stress–strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects. J. Pipeline Syst. Eng. Pract. (2014) Trifonov, O.V.: Numerical stress–strain analysis of buried steel pipelines crossing active strike-slip faults with an emphasis on fault modeling aspects. J. Pipeline Syst. Eng. Pract. (2014)
32.
go back to reference Trifonov, O.V.; Cherniy, V.P.: Elastoplastic stress–strain analysis of buried steel pipelines subjected to fault displacements with account for service loads. Soil Dyn. Earthq. Eng. 33, 54–62 (2012)CrossRef Trifonov, O.V.; Cherniy, V.P.: Elastoplastic stress–strain analysis of buried steel pipelines subjected to fault displacements with account for service loads. Soil Dyn. Earthq. Eng. 33, 54–62 (2012)CrossRef
33.
go back to reference Vazouras, P.; Karamanos, S.A.; Dakoulas, P.: Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dyn. Earthq. Eng. 30, 1361–1376 (2010)CrossRef Vazouras, P.; Karamanos, S.A.; Dakoulas, P.: Finite element analysis of buried steel pipelines under strike-slip fault displacements. Soil Dyn. Earthq. Eng. 30, 1361–1376 (2010)CrossRef
34.
go back to reference Vazouras, P.; Karamanos, S.A.; Dakoulas, P.: Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dyn. Earthq. Eng. 41, 164–180 (2012)CrossRef Vazouras, P.; Karamanos, S.A.; Dakoulas, P.: Mechanical behavior of buried steel pipes crossing active strike-slip faults. Soil Dyn. Earthq. Eng. 41, 164–180 (2012)CrossRef
35.
go back to reference Xie, X.; Symans, M.D.; O’Rourke, M.J.; Abdoun, T.H.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Numerical modeling of buried HDPE pipelines subjected to strike-slip faulting. J. Earthq. Eng. 15, 1273–1296 (2011)CrossRef Xie, X.; Symans, M.D.; O’Rourke, M.J.; Abdoun, T.H.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E.: Numerical modeling of buried HDPE pipelines subjected to strike-slip faulting. J. Earthq. Eng. 15, 1273–1296 (2011)CrossRef
36.
go back to reference Zhang, J.; Liang, Z.; Han, C.: Buckling behavior analysis of buried gas pipeline under strike-slip fault displacement. J. Nat. Gas Sci. Eng. 21, 921–928 (2014)CrossRef Zhang, J.; Liang, Z.; Han, C.: Buckling behavior analysis of buried gas pipeline under strike-slip fault displacement. J. Nat. Gas Sci. Eng. 21, 921–928 (2014)CrossRef
37.
go back to reference González, O.; Fraile, A.; Hermanns, L.: A numerical and semi-analytical comparison for structural analysis of fault-crossing pipelines. Comptes Rendus Mécanique 343, 397–409 (2015)CrossRef González, O.; Fraile, A.; Hermanns, L.: A numerical and semi-analytical comparison for structural analysis of fault-crossing pipelines. Comptes Rendus Mécanique 343, 397–409 (2015)CrossRef
38.
go back to reference Joshi, S.; Prashant, A.; Deb, A.; Jain, S.K.: Analysis of buried pipelines subjected to reverse fault motion. Soil Dyn. Earthq. Eng. 31, 930–940 (2011)CrossRef Joshi, S.; Prashant, A.; Deb, A.; Jain, S.K.: Analysis of buried pipelines subjected to reverse fault motion. Soil Dyn. Earthq. Eng. 31, 930–940 (2011)CrossRef
39.
go back to reference Liu, X.; Zhang, H.; Li, M.; Xia, M.; Zheng, W.; Wu, K.; Han, Y.: Effects of steel properties on the local buckling response of high strength pipelines subjected to reverse faulting. J. Nat. Gas Sci. Eng. 33, 378–387 (2016)CrossRef Liu, X.; Zhang, H.; Li, M.; Xia, M.; Zheng, W.; Wu, K.; Han, Y.: Effects of steel properties on the local buckling response of high strength pipelines subjected to reverse faulting. J. Nat. Gas Sci. Eng. 33, 378–387 (2016)CrossRef
40.
go back to reference ABAQUS, Abaqus v6. 12 Documentation-ABAQUS analysis user’s manual, Abaqus, Providence, RI, (2012) ABAQUS, Abaqus v6. 12 Documentation-ABAQUS analysis user’s manual, Abaqus, Providence, RI, (2012)
41.
go back to reference Guidelines for the design of buried steel Pipe American Lifelines Alliance—ASCE, July 2001 (with addenda through February 2005) Guidelines for the design of buried steel Pipe American Lifelines Alliance—ASCE, July 2001 (with addenda through February 2005)
42.
go back to reference Ramberg, W.; Osgood, W.R.; U.S.N.A.C.F. Aeronautics: Description of Stress–Strain Curves by Three Parameters, National Advisory Committee for Aeronautics, (1943) Ramberg, W.; Osgood, W.R.; U.S.N.A.C.F. Aeronautics: Description of Stress–Strain Curves by Three Parameters, National Advisory Committee for Aeronautics, (1943)
43.
go back to reference Savidis, S.A.; Schepers, W.; Nomikos, E.; Papadakos, G.: Design of a natural gas pipeline subject to permanent ground deformation at normal faults: a parametric study on numerical VS. Semi-Anal. Proced. Santiago 10, 13 (2011) Savidis, S.A.; Schepers, W.; Nomikos, E.; Papadakos, G.: Design of a natural gas pipeline subject to permanent ground deformation at normal faults: a parametric study on numerical VS. Semi-Anal. Proced. Santiago 10, 13 (2011)
44.
go back to reference IITK-GSDMA, Guidelines for seismic design of buried pipelines. In: National Information Center of Earthquake Engineering, Indian Institute of Technology Kanpur (2007) IITK-GSDMA, Guidelines for seismic design of buried pipelines. In: National Information Center of Earthquake Engineering, Indian Institute of Technology Kanpur (2007)
45.
go back to reference C.S. Association, Oil and Gas Pipeline Systems-CSA Z662-15, CSA Group (2015) C.S. Association, Oil and Gas Pipeline Systems-CSA Z662-15, CSA Group (2015)
46.
go back to reference EN 1998-4: Eurocode 8: Design of structures for earthquake resistance—part 4: Silos, tanks and pipelines. In: CEN European Committee for Standardisation (2006) EN 1998-4: Eurocode 8: Design of structures for earthquake resistance—part 4: Silos, tanks and pipelines. In: CEN European Committee for Standardisation (2006)
47.
go back to reference Liu, B.; Liu, X.; Zhang, H.: Strain-based design criteria of pipelines. J. Loss Prev. Process Ind. 22, 884–888 (2009)CrossRef Liu, B.; Liu, X.; Zhang, H.: Strain-based design criteria of pipelines. J. Loss Prev. Process Ind. 22, 884–888 (2009)CrossRef
48.
go back to reference Whidden, W.R.: Buried flexible steel pipe: design and structural analysis. In: American Society of Civil Engineers, (2009) Whidden, W.R.: Buried flexible steel pipe: design and structural analysis. In: American Society of Civil Engineers, (2009)
49.
go back to reference Kong, L.; Zhou, X.; Chen, L.; Shuai, J.; Huang, K.; Yu, G.: True stress–strain curves test and material property analysis of API X65 and API X90 gas pipeline steels. J. Pipeline Syst. Eng. Pract. 9, 04017030 (2018)CrossRef Kong, L.; Zhou, X.; Chen, L.; Shuai, J.; Huang, K.; Yu, G.: True stress–strain curves test and material property analysis of API X65 and API X90 gas pipeline steels. J. Pipeline Syst. Eng. Pract. 9, 04017030 (2018)CrossRef
50.
go back to reference Specification, API.: 5L, Specification for Line Pipe, Edition March, (2004) Specification, API.: 5L, Specification for Line Pipe, Edition March, (2004)
51.
go back to reference Sreenath, S.; Saravanan, U.; Kalyanaraman, V.: Beam and shell element model for advanced analysis of steel structural members. J. Constr. Steel Res. 67, 1789–1796 (2011)CrossRef Sreenath, S.; Saravanan, U.; Kalyanaraman, V.: Beam and shell element model for advanced analysis of steel structural members. J. Constr. Steel Res. 67, 1789–1796 (2011)CrossRef
52.
go back to reference Sarawit, A.; Kim, Y.; Bakker, M.; Peköz, T.: The finite element method for thin-walled members-applications. Thin-walled Struct. 41, 191–206 (2003)CrossRef Sarawit, A.; Kim, Y.; Bakker, M.; Peköz, T.: The finite element method for thin-walled members-applications. Thin-walled Struct. 41, 191–206 (2003)CrossRef
Metadata
Title
Numerical Investigation on the Deformational Behavior of Continuous Buried Pipelines Under Reverse Faulting
Authors
Amin Monshizadeh Naeen
Ehsan Seyedi Hosseininia
Publication date
16-07-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04766-2

Other articles of this Issue 10/2020

Arabian Journal for Science and Engineering 10/2020 Go to the issue

Premium Partners