Skip to main content
Top

2016 | OriginalPaper | Chapter

7. Numerical Method

Authors : Eduard Feireisl, Trygve G. Karper, Milan Pokorný

Published in: Mathematical Theory of Compressible Viscous Fluids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We show that the weak solutions to the Navier–Stokes system exist, globally in time, for any finite energy initial data. The proof will be constructive in the sense that the desired weak solution is obtained as a suitable limit of a numerical scheme. By a numerical scheme we mean a finite number of algebraic equations yielding an approximate solution of the problem. To this end, we use the method of time discretization in combination with a mixed finite-volume finite-element scheme to solve that resulting “stationary” problems. The scheme is implicit, the numerical approximation at any time level is obtained as a solution of a finite system of nonlinear algebraic equations resulting from the spatial discretization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Krajevyje zadaci mechaniki neodnorodnych zidkostej, Novosibirsk (1983) S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Krajevyje zadaci mechaniki neodnorodnych zidkostej, Novosibirsk (1983)
3.
go back to reference Š. Axmann, M. Pokorný, Time-periodic solutions to the full Navier–Stokes–Fourier system with radiation on the boundary. J. Math. Anal. Appl. 428 (1), 414–444 (2015)MathSciNetCrossRefMATH Š. Axmann, M. Pokorný, Time-periodic solutions to the full Navier–Stokes–Fourier system with radiation on the boundary. J. Math. Anal. Appl. 428 (1), 414–444 (2015)MathSciNetCrossRefMATH
5.
go back to reference I. Babuška, A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) (Academic, New York, 1972), pp. 1–359. With the collaboration of G. Fix and R.B. Kellogg I. Babuška, A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) (Academic, New York, 1972), pp. 1–359. With the collaboration of G. Fix and R.B. Kellogg
6.
go back to reference G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)MATH G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, 1967)MATH
7.
go back to reference D. Bresch, P.-E. Jabin, Global existence of weak solutions for compressible Navier–Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor (2015). Arxiv preprint No. 1507.04629v1 D. Bresch, P.-E. Jabin, Global existence of weak solutions for compressible Navier–Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor (2015). Arxiv preprint No. 1507.04629v1
8.
go back to reference H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (North-Holland, Amsterdam, 1973)MATH H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert (North-Holland, Amsterdam, 1973)MATH
9.
10.
go back to reference M.O. Bristeau, R. Glowinski, J. Périaux, Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flows, in Finite Elements in Physics (Lausanne, 1986) (North-Holland, Amsterdam, 1987), pp. 73–187 M.O. Bristeau, R. Glowinski, J. Périaux, Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flows, in Finite Elements in Physics (Lausanne, 1986) (North-Holland, Amsterdam, 1987), pp. 73–187
11.
go back to reference M.O. Bristeau, R. Glowinski, L. Dutto, J. Périaux, G. Rogé, On recent numerical simulations of compressible Navier–Stokes flows, in Numerical Simulation of Unsteady Flows and Transition to Turbulence (Lausanne, 1990) (Cambridge University Press, Cambridge, 1992), pp. 443–472 M.O. Bristeau, R. Glowinski, L. Dutto, J. Périaux, G. Rogé, On recent numerical simulations of compressible Navier–Stokes flows, in Numerical Simulation of Unsteady Flows and Transition to Turbulence (Lausanne, 1990) (Cambridge University Press, Cambridge, 1992), pp. 443–472
12.
go back to reference C. Carlenzoli, A. Quarteroni, A. Valli, Numerical solution of the Navier–Stokes equations for viscous compressible flows, in Applied Mathematics in Aerospace Science and Engineering (Erice, 1991). Mathematical Concepts and Methods in Science and Engineering, vol. 44 (Plenum, New York, 1994), pp. 81–111 C. Carlenzoli, A. Quarteroni, A. Valli, Numerical solution of the Navier–Stokes equations for viscous compressible flows, in Applied Mathematics in Aerospace Science and Engineering (Erice, 1991). Mathematical Concepts and Methods in Science and Engineering, vol. 44 (Plenum, New York, 1994), pp. 81–111
13.
go back to reference R.W. Carroll, Abstract Methods in Partial Differential Equations. Harper’s Series in Modern Mathematics (Harper & Row, New York, 1969) R.W. Carroll, Abstract Methods in Partial Differential Equations. Harper’s Series in Modern Mathematics (Harper & Row, New York, 1969)
14.
go back to reference G.-Q. Chen, H. Frid, On the theory of divergence-measure fields and its applications. Bol. Soc. Brasil. Mat. (N.S.) 32 (3), 401–433 (2001). Dedicated to Constantine Dafermos on his 60th birthday G.-Q. Chen, H. Frid, On the theory of divergence-measure fields and its applications. Bol. Soc. Brasil. Mat. (N.S.) 32 (3), 401–433 (2001). Dedicated to Constantine Dafermos on his 60th birthday
15.
go back to reference N. Chikami, R. Danchin, On the well-posedness of the full compressible Navier–Stokes system in critical Besov spaces. J. Differ. Equ. 258 (10), 3435–3467 (2015)MathSciNetCrossRefMATH N. Chikami, R. Danchin, On the well-posedness of the full compressible Navier–Stokes system in critical Besov spaces. J. Differ. Equ. 258 (10), 3435–3467 (2015)MathSciNetCrossRefMATH
16.
go back to reference E. Chiodaroli, O. Kreml, On the energy dissipation rate of solutions to the compressible isentropic Euler system. Arch. Ration. Mech. Anal. 214 (3), 1019–1049 (2014)MathSciNetCrossRefMATH E. Chiodaroli, O. Kreml, On the energy dissipation rate of solutions to the compressible isentropic Euler system. Arch. Ration. Mech. Anal. 214 (3), 1019–1049 (2014)MathSciNetCrossRefMATH
17.
go back to reference E. Chiodaroli, C. De Lellis, O. Kreml, Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68 (7), 1157–1190 (2015)MathSciNetCrossRefMATH E. Chiodaroli, C. De Lellis, O. Kreml, Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68 (7), 1157–1190 (2015)MathSciNetCrossRefMATH
18.
go back to reference Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)MathSciNetCrossRefMATH Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids. J. Math. Pures Appl. 83, 243–275 (2004)MathSciNetCrossRefMATH
19.
go back to reference A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, New York, 1979)CrossRefMATH A.J. Chorin, J.E. Marsden, A Mathematical Introduction to Fluid Mechanics (Springer, New York, 1979)CrossRefMATH
20.
21.
go back to reference R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160 (1), 1–39 (2001)MathSciNetCrossRefMATH R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160 (1), 1–39 (2001)MathSciNetCrossRefMATH
22.
go back to reference R. Danchin, A Lagrangian approach for the compressible Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 64 (2), 753–791 (2014) R. Danchin, A Lagrangian approach for the compressible Navier–Stokes equations. Ann. Inst. Fourier (Grenoble) 64 (2), 753–791 (2014)
23.
go back to reference C. De Lellis, L. Székelyhidi, Jr., The Euler equations as a differential inclusion. Ann. Math. (2) 170 (3), 1417–1436 (2009) C. De Lellis, L. Székelyhidi, Jr., The Euler equations as a differential inclusion. Ann. Math. (2) 170 (3), 1417–1436 (2009)
24.
go back to reference C. De Lellis, L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195 (1), 225–260 (2010)MathSciNetCrossRefMATH C. De Lellis, L. Székelyhidi, Jr., On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195 (1), 225–260 (2010)MathSciNetCrossRefMATH
26.
go back to reference R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)MathSciNetCrossRefMATH R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)MathSciNetCrossRefMATH
27.
go back to reference R.E. Edwards, Functional Analysis (Holt-Rinehart-Winston, New York, 1965)MATH R.E. Edwards, Functional Analysis (Holt-Rinehart-Winston, New York, 1965)MATH
28.
go back to reference I. Ekeland, R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976)MATH I. Ekeland, R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976)MATH
29.
go back to reference S. Eliezer, A. Ghatak, H. Hora, An Introduction to Equations of States, Theory and Applications (Cambridge University Press, Cambridge, 1986)MATH S. Eliezer, A. Ghatak, H. Hora, An Introduction to Equations of States, Theory and Applications (Cambridge University Press, Cambridge, 1986)MATH
30.
go back to reference L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998) L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)
31.
go back to reference L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press, Boca Raton, 1992)MATH L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions (CRC Press, Boca Raton, 1992)MATH
32.
go back to reference C.L. Fefferman, Existence and smoothness of the Navier-Stokes equation, in The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2006), pp. 57–67MATH C.L. Fefferman, Existence and smoothness of the Navier-Stokes equation, in The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2006), pp. 57–67MATH
33.
34.
go back to reference E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)MATH E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, Oxford, 2004)MATH
35.
go back to reference E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser, Basel, 2009)CrossRefMATH E. Feireisl, A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids (Birkhäuser, Basel, 2009)CrossRefMATH
36.
go back to reference E. Feireisl, Š. Matuš˚u-Nečasová, H. Petzeltová, I. Straškraba, On the motion of a viscous compressible flow driven by a time-periodic external flow. Arch. Ration. Mech. Anal. 149, 69–96 (1999) E. Feireisl, Š. Matuš˚u-Nečasová, H. Petzeltová, I. Straškraba, On the motion of a viscous compressible flow driven by a time-periodic external flow. Arch. Ration. Mech. Anal. 149, 69–96 (1999)
37.
go back to reference E. Feireisl, A. Novotný, H. Petzeltová, On the domain dependence of solutions to the compressible Navier–Stokes equations of a barotropic fluid. Math. Methods Appl. Sci. 25, 1045–1073 (2002)MathSciNetCrossRefMATH E. Feireisl, A. Novotný, H. Petzeltová, On the domain dependence of solutions to the compressible Navier–Stokes equations of a barotropic fluid. Math. Methods Appl. Sci. 25, 1045–1073 (2002)MathSciNetCrossRefMATH
38.
go back to reference E. Feireisl, A. Novotný, Y. Sun, Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J., 60, 611–631 (2011)MathSciNetCrossRefMATH E. Feireisl, A. Novotný, Y. Sun, Suitable weak solutions to the Navier–Stokes equations of compressible viscous fluids. Indiana Univ. Math. J., 60, 611–631 (2011)MathSciNetCrossRefMATH
39.
go back to reference E. Feireisl, B.J. Jin, A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 712–730 (2012)MathSciNetMATH E. Feireisl, B.J. Jin, A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier–Stokes system. J. Math. Fluid Mech. 14, 712–730 (2012)MathSciNetMATH
40.
go back to reference E. Feireisl, P. Mucha, A. Novotný, M. Pokorný, Time periodic solutions to the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 745–786 (2012)MathSciNetCrossRefMATH E. Feireisl, P. Mucha, A. Novotný, M. Pokorný, Time periodic solutions to the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 204, 745–786 (2012)MathSciNetCrossRefMATH
41.
go back to reference M. Feistauer, J. Felcman, M. Lukáčová-Medviďová, Combined finite element–finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1–3), 179–199 (1995). International Symposium on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994) M. Feistauer, J. Felcman, M. Lukáčová-Medviďová, Combined finite element–finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1–3), 179–199 (1995). International Symposium on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994)
42.
go back to reference M. Feistauer, J. Felcman, I. Straškraba, Mathematical and Computational Methods for Compressible Flow (Oxford Science Publications, Oxford, 2003)MATH M. Feistauer, J. Felcman, I. Straškraba, Mathematical and Computational Methods for Compressible Flow (Oxford Science Publications, Oxford, 2003)MATH
43.
go back to reference I. Fleischer, J.E. Porter, Convergence of metric space-valued BV functions. Real Anal. Exch. 27 (1), 315–319 (2001/02) I. Fleischer, J.E. Porter, Convergence of metric space-valued BV functions. Real Anal. Exch. 27 (1), 315–319 (2001/02)
44.
go back to reference J. Frehse, M. Steinhauer, W. Weigant, The Dirichlet problem for steady viscous compressible flow in three dimensions. J. Math. Pures Appl. (9) 97 (2), 85–97 (2012) J. Frehse, M. Steinhauer, W. Weigant, The Dirichlet problem for steady viscous compressible flow in three dimensions. J. Math. Pures Appl. (9) 97 (2), 85–97 (2012)
45.
go back to reference H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974)MATH H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974)MATH
46.
48.
go back to reference P. Germain, Weak-strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13 (1), 137–146 (2011)MathSciNetCrossRefMATH P. Germain, Weak-strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13 (1), 137–146 (2011)MathSciNetCrossRefMATH
49.
go back to reference V. Girinon, Navier–Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain. J. Math. Fluid Mech. 13 (3), 309–339 (2011)MathSciNetCrossRefMATH V. Girinon, Navier–Stokes equations with nonhomogeneous boundary conditions in a bounded three-dimensional domain. J. Math. Fluid Mech. 13 (3), 309–339 (2011)MathSciNetCrossRefMATH
50.
go back to reference M. Gurris, D. Kuzmin, S. Turek, Implicit finite element schemes for the stationary compressible Euler equations. Int. J. Numer. Methods Fluids 69 (1), 1–28 (2012)MathSciNetCrossRefMATH M. Gurris, D. Kuzmin, S. Turek, Implicit finite element schemes for the stationary compressible Euler equations. Int. J. Numer. Methods Fluids 69 (1), 1–28 (2012)MathSciNetCrossRefMATH
51.
go back to reference R. Herbin, W. Kheriji, J.-C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM Math. Model. Numer. Anal. 48, 1807–1857 (2014). Published on-line R. Herbin, W. Kheriji, J.-C. Latché, On some implicit and semi-implicit staggered schemes for the shallow water and Euler equations. ESAIM Math. Model. Numer. Anal. 48, 1807–1857 (2014). Published on-line
52.
go back to reference D. Hoff, Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)MathSciNetCrossRefMATH D. Hoff, Dynamics of singularity surfaces for compressible viscous flows in two space dimensions. Commun. Pure Appl. Math. 55, 1365–1407 (2002)MathSciNetCrossRefMATH
53.
go back to reference D. Hoff, Uniqueness of weak solutions of the Navier–Stokes equations of multidimensional, compressible flow. SIAM J. Math. Anal. 37, 1742–1760 (2006)MathSciNetCrossRefMATH D. Hoff, Uniqueness of weak solutions of the Navier–Stokes equations of multidimensional, compressible flow. SIAM J. Math. Anal. 37, 1742–1760 (2006)MathSciNetCrossRefMATH
54.
go back to reference D. Hoff, M.M. Santos, Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188 (3), 509–543 (2008)MathSciNetCrossRefMATH D. Hoff, M.M. Santos, Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188 (3), 509–543 (2008)MathSciNetCrossRefMATH
55.
go back to reference D. Hoff, J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations. Commun. Math. Phys. 216 (2), 255–276 (2001)MathSciNetCrossRefMATH D. Hoff, J. Smoller, Non-formation of vacuum states for compressible Navier-Stokes equations. Commun. Math. Phys. 216 (2), 255–276 (2001)MathSciNetCrossRefMATH
56.
go back to reference D. Jesslé, A. Novotný, Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime. J. Math. Pures Appl. (9) 99 (3), 280–296 (2013) D. Jesslé, A. Novotný, Existence of renormalized weak solutions to the steady equations describing compressible fluids in barotropic regime. J. Math. Pures Appl. (9) 99 (3), 280–296 (2013)
57.
go back to reference D. Jesslé, A. Novotný, M. Pokorný, Steady Navier–Stokes–Fourier system with slip boundary conditions. Math. Models Methods Appl. Sci. 24 (4), 751–781 (2014)MathSciNetCrossRefMATH D. Jesslé, A. Novotný, M. Pokorný, Steady Navier–Stokes–Fourier system with slip boundary conditions. Math. Models Methods Appl. Sci. 24 (4), 751–781 (2014)MathSciNetCrossRefMATH
58.
59.
go back to reference A.V. Kazhikhov, Correctness “in the large” of mixed boundary value problems for a model system of equations of a viscous gas. Dinamika Splošn. Sredy 21 (Tecenie Zidkost. so Svobod. Granicami), 18–47, 188 (1975) A.V. Kazhikhov, Correctness “in the large” of mixed boundary value problems for a model system of equations of a viscous gas. Dinamika Splošn. Sredy 21 (Tecenie Zidkost. so Svobod. Granicami), 18–47, 188 (1975)
60.
go back to reference J.L. Kelley, General Topology (Van Nostrand, Inc., Princeton, 1957)MATH J.L. Kelley, General Topology (Van Nostrand, Inc., Princeton, 1957)MATH
61.
go back to reference B. Kellogg, B. Liu, The analysis of a finite element method for the Navier–Stokes equations with compressibility. Numer. Math. 87 (1), 153–170 (2000)MathSciNetCrossRefMATH B. Kellogg, B. Liu, The analysis of a finite element method for the Navier–Stokes equations with compressibility. Numer. Math. 87 (1), 153–170 (2000)MathSciNetCrossRefMATH
62.
go back to reference G. Kothe, Topological Vector Spaces I (Springer, Heidelberg, 1969)MATH G. Kothe, Topological Vector Spaces I (Springer, Heidelberg, 1969)MATH
63.
go back to reference S.N. Kruzhkov, First order quasilinear equations in several space variables (in Russian). Math. Sbornik 81, 217–243 (1970)CrossRefMATH S.N. Kruzhkov, First order quasilinear equations in several space variables (in Russian). Math. Sbornik 81, 217–243 (1970)CrossRefMATH
64.
go back to reference A. Kufner, O. John, S. Fučík, Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis (Noordhoff International Publishing, Leyden, 1977) A. Kufner, O. John, S. Fučík, Function Spaces. Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis (Noordhoff International Publishing, Leyden, 1977)
65.
go back to reference H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932)MATH H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932)MATH
66.
go back to reference L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1968)MATH L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, New York, 1968)MATH
67.
68.
go back to reference P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models (Oxford Science Publication, Oxford, 1998) P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol.2, Compressible Models (Oxford Science Publication, Oxford, 1998)
69.
go back to reference A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MathSciNetMATH A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)MathSciNetMATH
70.
go back to reference A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)MathSciNetCrossRefMATH A. Matsumura, T. Nishida, The initial value problem for the equations of motion of compressible and heat conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)MathSciNetCrossRefMATH
71.
go back to reference A. Matsumura, M. Padula, Stability of stationary flow of compressible fluids subject to large external potential forces. Stab. Appl. Anal. Continuous Media 2, 183–202 (1992) A. Matsumura, M. Padula, Stability of stationary flow of compressible fluids subject to large external potential forces. Stab. Appl. Anal. Continuous Media 2, 183–202 (1992)
72.
73.
go back to reference P.B. Mucha, W. Zajaczkowski, On local-in-time existence for the Dirichlet problem for equations of compressible viscous fluids. Ann. Polon. Math. 78 (3), 227–239 (2002)MathSciNetCrossRefMATH P.B. Mucha, W. Zajaczkowski, On local-in-time existence for the Dirichlet problem for equations of compressible viscous fluids. Ann. Polon. Math. 78 (3), 227–239 (2002)MathSciNetCrossRefMATH
74.
go back to reference F. Murat, Compacité par compensation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. Ser. 5 IV, 489–507 (1978) F. Murat, Compacité par compensation. Ann. Sc. Norm. Sup. Pisa Cl. Sci. Ser. 5 IV, 489–507 (1978)
75.
go back to reference J. Nečas, Les méthodes directes en théorie des équations elliptiques (Academia, Praha, 1967) J. Nečas, Les méthodes directes en théorie des équations elliptiques (Academia, Praha, 1967)
76.
77.
go back to reference A. Novotný, M. Pokorný, Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations. J. Differ. Equ. 251 (2), 270–315 (2011)MathSciNetCrossRefMATH A. Novotný, M. Pokorný, Steady compressible Navier-Stokes-Fourier system for monoatomic gas and its generalizations. J. Differ. Equ. 251 (2), 270–315 (2011)MathSciNetCrossRefMATH
78.
go back to reference A. Novotný, M. Pokorný, Weak and variational solutions to steady equations for compressible heat conducting fluids. SIAM J. Math. Anal. 43 (3), 1158–1188 (2011)MathSciNetCrossRefMATH A. Novotný, M. Pokorný, Weak and variational solutions to steady equations for compressible heat conducting fluids. SIAM J. Math. Anal. 43 (3), 1158–1188 (2011)MathSciNetCrossRefMATH
79.
go back to reference A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford University Press, Oxford, 2004)MATH A. Novotný, I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow (Oxford University Press, Oxford, 2004)MATH
80.
81.
82.
go back to reference P.I. Plotnikov, W. Weigant, Steady 3D viscous compressible flows with adiabatic exponent γ ∈ (1, ∞). J. Math. Pures Appl. (9) 104 (1), 58–82 (2015) P.I. Plotnikov, W. Weigant, Steady 3D viscous compressible flows with adiabatic exponent γ ∈ (1, ). J. Math. Pures Appl. (9) 104 (1), 58–82 (2015)
83.
go back to reference N.V. Priezjev, S.M. Troian, Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)CrossRefMATH N.V. Priezjev, S.M. Troian, Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)CrossRefMATH
84.
go back to reference R. Salvi, I. Straškraba, Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Fac. Sci. Tokyo Sect. IA Math. 40, 17–51 (1993) R. Salvi, I. Straškraba, Global existence for viscous compressible fluids and their behaviour as t → . J. Fac. Sci. Tokyo Sect. IA Math. 40, 17–51 (1993)
85.
go back to reference J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1967)MATH J. Smoller, Shock Waves and Reaction-Diffusion Equations (Springer, New York, 1967)MATH
86.
go back to reference E.M. Stein, Singular Integrals and Differential Properties of Functions (Princeton University Press, Princeton, 1970)MATH E.M. Stein, Singular Integrals and Differential Properties of Functions (Princeton University Press, Princeton, 1970)MATH
87.
go back to reference Y. Sun, C. Wang, Z. Zhang, A Beale–Kato–Majda criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pures Appl. 95 (1), 36–47 (2011)MathSciNetCrossRefMATH Y. Sun, C. Wang, Z. Zhang, A Beale–Kato–Majda criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pures Appl. 95 (1), 36–47 (2011)MathSciNetCrossRefMATH
88.
go back to reference A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion. Publ. RIMS Kyoto Univ. 13, 193–253 (1977)CrossRefMATH A. Tani, On the first initial-boundary value problem of compressible viscous fluid motion. Publ. RIMS Kyoto Univ. 13, 193–253 (1977)CrossRefMATH
89.
go back to reference L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, ed. by L.J. Knopps. Research Notes in Mathematics, vol. 39 (Pitman, Boston, 1975), pp. 136–211 L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, ed. by L.J. Knopps. Research Notes in Mathematics, vol. 39 (Pitman, Boston, 1975), pp. 136–211
90.
go back to reference H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978)MATH H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (VEB Deutscher Verlag der Wissenschaften, Berlin, 1978)MATH
91.
go back to reference C. Truesdell, The Elements of Continuum Mechanics (Springer, New York, 1966)MATH C. Truesdell, The Elements of Continuum Mechanics (Springer, New York, 1966)MATH
92.
go back to reference C. Truesdell, A First Course in Rational Continuum Mechanics (Academic, New York, 1991)MATH C. Truesdell, A First Course in Rational Continuum Mechanics (Academic, New York, 1991)MATH
93.
go back to reference C. Truesdell, K.R. Rajagopal, An Introduction to the Mechanics of Fluids (Birkhäuser, Boston, 2000)CrossRefMATH C. Truesdell, K.R. Rajagopal, An Introduction to the Mechanics of Fluids (Birkhäuser, Boston, 2000)CrossRefMATH
94.
go back to reference V.A. Vaigant, A.V. Kazhikhov, On the existence of global solutions to two-dimensional Navier–Stokes equations of a compressible viscous fluid (in Russian). Sibirskij Mat. Z. 36 (6), 1283–1316 (1995)MathSciNetMATH V.A. Vaigant, A.V. Kazhikhov, On the existence of global solutions to two-dimensional Navier–Stokes equations of a compressible viscous fluid (in Russian). Sibirskij Mat. Z. 36 (6), 1283–1316 (1995)MathSciNetMATH
95.
go back to reference A. Valli, An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (4) 130, 197–213 (1982) A. Valli, An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (4) 130, 197–213 (1982)
96.
go back to reference A. Valli, A correction to the paper: “An existence theorem for compressible viscous fluids” [Ann. Mat. Pura Appl. (4) 130, 197–213 (1982); MR 83h:35112]. Ann. Mat. Pura Appl. (4) 132, 399–400 (1983) A. Valli, A correction to the paper: “An existence theorem for compressible viscous fluids” [Ann. Mat. Pura Appl. (4) 130, 197–213 (1982); MR 83h:35112]. Ann. Mat. Pura Appl. (4) 132, 399–400 (1983)
97.
go back to reference A. Valli, M. Zajaczkowski, Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)MathSciNetCrossRefMATH A. Valli, M. Zajaczkowski, Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103, 259–296 (1986)MathSciNetCrossRefMATH
98.
go back to reference H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier–Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)MathSciNetCrossRefMATH H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier–Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)MathSciNetCrossRefMATH
100.
go back to reference A.A. Zlotnik, A.A. Amosov, Generalized solutions “in the large” of equations of the one-dimensional motion of a viscous barotropic gas. Dokl. Akad. Nauk SSSR 299 (6), 1303–1307 (1988)MathSciNetMATH A.A. Zlotnik, A.A. Amosov, Generalized solutions “in the large” of equations of the one-dimensional motion of a viscous barotropic gas. Dokl. Akad. Nauk SSSR 299 (6), 1303–1307 (1988)MathSciNetMATH
Metadata
Title
Numerical Method
Authors
Eduard Feireisl
Trygve G. Karper
Milan Pokorný
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-44835-0_7

Premium Partner