Skip to main content
Top

2021 | OriginalPaper | Chapter

Numerical Methods for Solving Nonlinear Equations

Authors : Narges Mohammadi, Shahram Mehdipour-Ataei, Maryam Mohammadi

Published in: Numerical Methods for Energy Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The nonlinear description has continuously been crucial in a wide range of disciplines to provide an accurate prediction of a natural phenomenon. Thus, finding a reliable solution method for these nonlinear models is of significant importance since, in most real-life applications, direct solution methods are not feasible, even in linear cases. Moreover, an inefficient method is likely to take additional computational cost and effort. This chapter attempts to provide a fundamental description of various iterative methods for solving nonlinear discretized equations. In the first part, a theoretical account of nonlinear systems with different types of iterative methods are depicted. The second part deals with both one-point and multi-point iterative methods; this includes a description of the method, mathematical formulations, and the weak and strong points. Different iterative methods to solve a system of nonlinear equations are then described. Some discussed methods include the family of conjugate gradient, multi-step, and Newton-like. This part also identifies intricacies regarding a system of nonlinear equations, offering different remedies to solve these issues. Finally, a comparative study of the discussed methods and their applications in solving conventional equations are outlined in brief. The iterative methods mentioned in this chapter can be useful not only in solving nonlinear problems but also in linear problems and optimization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang J (2018) A new iterative method for solving nonlinear equation. Dissertation, University of Saskatchewan Wang J (2018) A new iterative method for solving nonlinear equation. Dissertation, University of Saskatchewan
2.
go back to reference Reddy JN (2014) An introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP, Oxford Reddy JN (2014) An introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP, Oxford
3.
go back to reference Wong EC (2014) Numerical methods for nonlinear systems of equations. Dissertation, Universiti Teknologi Malaysia Wong EC (2014) Numerical methods for nonlinear systems of equations. Dissertation, Universiti Teknologi Malaysia
4.
go back to reference Mohammadi N, Asadi H, Aghdam MM (2019) An efficient solver for fully coupled solution of interaction between incompressible fluid flow and nanocomposite truncated conical shells. Comput Methods Appl Mech Eng 351:478–500MathSciNetCrossRef Mohammadi N, Asadi H, Aghdam MM (2019) An efficient solver for fully coupled solution of interaction between incompressible fluid flow and nanocomposite truncated conical shells. Comput Methods Appl Mech Eng 351:478–500MathSciNetCrossRef
5.
go back to reference Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier
6.
go back to reference Malik ZU (2015) Numerical iterative methods for nonlinear problems. Dissertation, Università degli Studi dell'Insubria Malik ZU (2015) Numerical iterative methods for nonlinear problems. Dissertation, Università degli Studi dell'Insubria
7.
go back to reference Maheshwari AK (2009) A fourth order iterative method for solving nonlinear equations. Appl Math Comput 211(2):383–391MathSciNetMATH Maheshwari AK (2009) A fourth order iterative method for solving nonlinear equations. Appl Math Comput 211(2):383–391MathSciNetMATH
8.
go back to reference Burden RL, Faires JD (2005) Numerical analysis, 8th ed. Thompson Brooks/Cole Burden RL, Faires JD (2005) Numerical analysis, 8th ed. Thompson Brooks/Cole
9.
go back to reference Traub JF (1982) Iterative methods for the solution of equations, vol 312. American Mathematical Soc Traub JF (1982) Iterative methods for the solution of equations, vol 312. American Mathematical Soc
10.
go back to reference Petković MS, Neta B, Petković LD et al (2014) Multipoint methods for solving nonlinear equations: a survey. Appl Math Comput 226:635–660MathSciNetMATH Petković MS, Neta B, Petković LD et al (2014) Multipoint methods for solving nonlinear equations: a survey. Appl Math Comput 226:635–660MathSciNetMATH
11.
go back to reference Soleymani F, Lotfi T, Bakhtiari P (2014) A multi-step class of iterative methods for nonlinear systems. Optim Lett 8(3):1001–1015MathSciNetCrossRef Soleymani F, Lotfi T, Bakhtiari P (2014) A multi-step class of iterative methods for nonlinear systems. Optim Lett 8(3):1001–1015MathSciNetCrossRef
12.
go back to reference Yamamoto T (2000) Historical developments in convergence analysis for Newton’s and Newton-like methods. J Comput Appl Math 124(1–2):1–23MathSciNetCrossRef Yamamoto T (2000) Historical developments in convergence analysis for Newton’s and Newton-like methods. J Comput Appl Math 124(1–2):1–23MathSciNetCrossRef
13.
go back to reference Pooley D (2003) Numerical methods for nonlinear equations in option pricing. Dissertation, University of Waterloo Pooley D (2003) Numerical methods for nonlinear equations in option pricing. Dissertation, University of Waterloo
14.
go back to reference Janem GA (2015) Solving nonlinear boundary value problems using the homotopy analysis method. Dissertation, United Arab Emirates University Janem GA (2015) Solving nonlinear boundary value problems using the homotopy analysis method. Dissertation, United Arab Emirates University
15.
go back to reference Gerald CF (2004) Applied numerical analysis. Pearson Education India Gerald CF (2004) Applied numerical analysis. Pearson Education India
17.
go back to reference Argyros IK, Szidarovszky F (2018) The theory and applications of iteration methods. CRC Press Argyros IK, Szidarovszky F (2018) The theory and applications of iteration methods. CRC Press
18.
go back to reference Cordero A, Torregrosa JR (2011) A class of Steffensen type methods with optimal order of convergence. Appl Math Comput 217(19):7653–7659MathSciNetMATH Cordero A, Torregrosa JR (2011) A class of Steffensen type methods with optimal order of convergence. Appl Math Comput 217(19):7653–7659MathSciNetMATH
19.
go back to reference Kou J, Li Y (2007) The improvements of Chebyshev-Halley methods with fifth-order convergence. Appl Math Comput 188(1):143–147MathSciNetMATH Kou J, Li Y (2007) The improvements of Chebyshev-Halley methods with fifth-order convergence. Appl Math Comput 188(1):143–147MathSciNetMATH
20.
go back to reference Chun C (2007) Some second-derivative-free variants of Chebyshev-Halley methods. Appl Math Comput 191(2):410–414MathSciNetMATH Chun C (2007) Some second-derivative-free variants of Chebyshev-Halley methods. Appl Math Comput 191(2):410–414MathSciNetMATH
21.
go back to reference Wang X, Liu L (2010) Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Appl Math Lett 23(5):549–554MathSciNetCrossRef Wang X, Liu L (2010) Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Appl Math Lett 23(5):549–554MathSciNetCrossRef
22.
go back to reference Soleymani F, Sharifi M, Mousavi BS (2012) An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J Optim Theory Appl 153(1):225–236MathSciNetCrossRef Soleymani F, Sharifi M, Mousavi BS (2012) An improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J Optim Theory Appl 153(1):225–236MathSciNetCrossRef
23.
go back to reference Thukral R, Petković MS (2010) A family of three-point methods of optimal order for solving nonlinear equations. J Comput Appl Math 233(9):2278–2284MathSciNetCrossRef Thukral R, Petković MS (2010) A family of three-point methods of optimal order for solving nonlinear equations. J Comput Appl Math 233(9):2278–2284MathSciNetCrossRef
24.
go back to reference Sharifi S, Salimi M, Siegmund S et al (2016) A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations. Math Comput Simul 119:69–90MathSciNetCrossRef Sharifi S, Salimi M, Siegmund S et al (2016) A new class of optimal four-point methods with convergence order 16 for solving nonlinear equations. Math Comput Simul 119:69–90MathSciNetCrossRef
25.
go back to reference Zafar F, Cordero A, Torregrosa JR (2019) Stability analysis of a family of optimal fourth-order methods for multiple roots. Numer Algorithms 81(3):947–981MathSciNetCrossRef Zafar F, Cordero A, Torregrosa JR (2019) Stability analysis of a family of optimal fourth-order methods for multiple roots. Numer Algorithms 81(3):947–981MathSciNetCrossRef
28.
go back to reference Zheng Q, Li J, Huang F (2011) An optimal Steffensen-type family for solving nonlinear equations. Appl Math Comput 217(23):9592–9597MathSciNetMATH Zheng Q, Li J, Huang F (2011) An optimal Steffensen-type family for solving nonlinear equations. Appl Math Comput 217(23):9592–9597MathSciNetMATH
29.
go back to reference Qasim S, Ali Z, Ahmad F et al (2016) Solving systems of nonlinear equations when the nonlinearity is expensive. Comput Math Appl 71(7):1464–1478MathSciNetCrossRef Qasim S, Ali Z, Ahmad F et al (2016) Solving systems of nonlinear equations when the nonlinearity is expensive. Comput Math Appl 71(7):1464–1478MathSciNetCrossRef
30.
go back to reference Sadiku MN (2000) Numerical techniques in electromagnetics. CRC press Sadiku MN (2000) Numerical techniques in electromagnetics. CRC press
31.
go back to reference Ahmad F, Tohidi E, Carrasco JA (2016) A parameterized multi-step Newton method for solving systems of nonlinear equations. Numer Algorithms 71(3):631–653MathSciNetCrossRef Ahmad F, Tohidi E, Carrasco JA (2016) A parameterized multi-step Newton method for solving systems of nonlinear equations. Numer Algorithms 71(3):631–653MathSciNetCrossRef
32.
go back to reference Nili Ahmadabadi M, Ahmad F, Yuan G et al (2016) Solving systems of nonlinear equations using decomposition technique. J Linear Topol Algebra 5(03):187–198MathSciNetMATH Nili Ahmadabadi M, Ahmad F, Yuan G et al (2016) Solving systems of nonlinear equations using decomposition technique. J Linear Topol Algebra 5(03):187–198MathSciNetMATH
33.
go back to reference Kelley CT (1995) Iterative methods for linear and nonlinear equations. Siam Kelley CT (1995) Iterative methods for linear and nonlinear equations. Siam
34.
go back to reference Shademan A, Farahmand AM, Jägersand M (2010) Robust Jacobian estimation for uncalibrated visual servoing. In: 2010 IEEE International conference on robotics and automation, Anchorage, AK, USA, May 2010. IEEE, p 5564 Shademan A, Farahmand AM, Jägersand M (2010) Robust Jacobian estimation for uncalibrated visual servoing. In: 2010 IEEE International conference on robotics and automation, Anchorage, AK, USA, May 2010. IEEE, p 5564
35.
go back to reference Lapresté JT, Jurie F, Dhome M et al (2004) An efficient method to compute the inverse Jacobian matrix in visual servoing. In: 2004 IEEE International conference on robotics and automation, New Orleans, LA, USA, USA, April 2004. ICRA'04, vol 1. IEEE, p 727 Lapresté JT, Jurie F, Dhome M et al (2004) An efficient method to compute the inverse Jacobian matrix in visual servoing. In: 2004 IEEE International conference on robotics and automation, New Orleans, LA, USA, USA, April 2004. ICRA'04, vol 1. IEEE, p 727
36.
go back to reference Mansard N, Lopes M, Santos-Victor J et al (2006) Jacobian learning methods for tasks sequencing in visual servoing. In: 2006 IEEE/RSJ International conference on intelligent robots and systems, Beijing, China, October 2006. IEEE, p 4284 Mansard N, Lopes M, Santos-Victor J et al (2006) Jacobian learning methods for tasks sequencing in visual servoing. In: 2006 IEEE/RSJ International conference on intelligent robots and systems, Beijing, China, October 2006. IEEE, p 4284
37.
go back to reference Tsoulos IG, Stavrakoudis A (2010) On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal Real World Appl 11(4):2465–2471MathSciNetCrossRef Tsoulos IG, Stavrakoudis A (2010) On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal Real World Appl 11(4):2465–2471MathSciNetCrossRef
38.
go back to reference Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in neural information processing systems, vol 26. Neural information processing systems, Lake Tahoe, Nevada, December 2013, p 315 Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance reduction. In: Advances in neural information processing systems, vol 26. Neural information processing systems, Lake Tahoe, Nevada, December 2013, p 315
39.
go back to reference Ranganathan A (2004) The Levenberg-Marquardt algorithm. Tutoral LM Algorithm 11(1):101–110 Ranganathan A (2004) The Levenberg-Marquardt algorithm. Tutoral LM Algorithm 11(1):101–110
40.
go back to reference Shukla PK (2010) Levenberg-Marquardt algorithms for nonlinear equations, multi-objective optimization, and complementarity problems. Dissertation, Dresden University of Technology Shukla PK (2010) Levenberg-Marquardt algorithms for nonlinear equations, multi-objective optimization, and complementarity problems. Dissertation, Dresden University of Technology
41.
go back to reference Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. Numerical analysis. Springer, Heidelberg Moré JJ (1978) The Levenberg-Marquardt algorithm: implementation and theory. Numerical analysis. Springer, Heidelberg
42.
go back to reference Ilyas I, Ali Z, Ahmad F et al (2017) Multi-step frozen Jacobian iterative scheme for solving IVPs and BVPs based on higher order Fréchet derivatives. J Math 49(1):125–137MathSciNetMATH Ilyas I, Ali Z, Ahmad F et al (2017) Multi-step frozen Jacobian iterative scheme for solving IVPs and BVPs based on higher order Fréchet derivatives. J Math 49(1):125–137MathSciNetMATH
43.
go back to reference Kouser S, Rehman SU, Ahmad F et al (2018) Generalized newton multi-step iterative methods GMN p, m for solving system of nonlinear equations. Int J Comput Math 95(5):881–897MathSciNetCrossRef Kouser S, Rehman SU, Ahmad F et al (2018) Generalized newton multi-step iterative methods GMN p, m for solving system of nonlinear equations. Int J Comput Math 95(5):881–897MathSciNetCrossRef
44.
go back to reference Shah FA, Noor MA (2015) Some numerical methods for solving nonlinear equations by using decomposition technique. Appl Math Comput 251:378–386MathSciNetMATH Shah FA, Noor MA (2015) Some numerical methods for solving nonlinear equations by using decomposition technique. Appl Math Comput 251:378–386MathSciNetMATH
45.
46.
go back to reference Alzahrania EO, Al-Aidarousa ES, Younasa AM et al (2016) A higher order frozen Jacobian iterative method for solving Hamilton-Jacobi equations. Convergence 1000:1 Alzahrania EO, Al-Aidarousa ES, Younasa AM et al (2016) A higher order frozen Jacobian iterative method for solving Hamilton-Jacobi equations. Convergence 1000:1
48.
go back to reference Shin BC, Darvishi MT, Kim CH (2010) A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems. Appl Math Comput 217(7):3190–3198MathSciNetMATH Shin BC, Darvishi MT, Kim CH (2010) A comparison of the Newton-Krylov method with high order Newton-like methods to solve nonlinear systems. Appl Math Comput 217(7):3190–3198MathSciNetMATH
49.
go back to reference Knoll DA, Keyes DE (2004) Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J Comput Phys 193(2):357–397MathSciNetCrossRef Knoll DA, Keyes DE (2004) Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J Comput Phys 193(2):357–397MathSciNetCrossRef
50.
go back to reference An HB, Wen J, Feng T (2011) On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method. J Comput Appl Math 236(6):1399–1409MathSciNetCrossRef An HB, Wen J, Feng T (2011) On finite difference approximation of a matrix-vector product in the Jacobian-free Newton-Krylov method. J Comput Appl Math 236(6):1399–1409MathSciNetCrossRef
51.
52.
go back to reference Gomes-Ruggiero MA, Lopes VLR, Toledo-Benavides JV (2008) A globally convergent inexact Newton method with a new choice for the forcing term. Ann Oper Res 157(1):193–205MathSciNetCrossRef Gomes-Ruggiero MA, Lopes VLR, Toledo-Benavides JV (2008) A globally convergent inexact Newton method with a new choice for the forcing term. Ann Oper Res 157(1):193–205MathSciNetCrossRef
54.
go back to reference Chen Y, Shen C (2006) A Jacobian-free Newton-GMRES (m) method with adaptive preconditioner and its application for power flow calculations. IEEE Trans Power Syst 21(3):1096–1103CrossRef Chen Y, Shen C (2006) A Jacobian-free Newton-GMRES (m) method with adaptive preconditioner and its application for power flow calculations. IEEE Trans Power Syst 21(3):1096–1103CrossRef
55.
go back to reference Mojabi P, LoVetri J (2009) Overview and classification of some regularization techniques for the Gauss-Newton inversion method applied to inverse scattering problems. IEEE Trans Antennas Propag 57(9):2658–2665MathSciNetCrossRef Mojabi P, LoVetri J (2009) Overview and classification of some regularization techniques for the Gauss-Newton inversion method applied to inverse scattering problems. IEEE Trans Antennas Propag 57(9):2658–2665MathSciNetCrossRef
56.
go back to reference Dlala E, Arkkio A (2008) Analysis of the convergence of the fixed-point method used for solving nonlinear rotational magnetic field problems. IEEE Trans Magn 44(4):473–478CrossRef Dlala E, Arkkio A (2008) Analysis of the convergence of the fixed-point method used for solving nonlinear rotational magnetic field problems. IEEE Trans Magn 44(4):473–478CrossRef
57.
go back to reference Dlala E, Belahcen A, Arkkio A (2007) Locally convergent fixed-point method for solving time-stepping nonlinear field problems. IEEE Trans Magn 43(11):3969–3975CrossRef Dlala E, Belahcen A, Arkkio A (2007) Locally convergent fixed-point method for solving time-stepping nonlinear field problems. IEEE Trans Magn 43(11):3969–3975CrossRef
58.
go back to reference Rubæk T, Meaney PM, Meincke P et al (2007) Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm. IEEE Trans Antennas Propag 55(8):2320–2331CrossRef Rubæk T, Meaney PM, Meincke P et al (2007) Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm. IEEE Trans Antennas Propag 55(8):2320–2331CrossRef
59.
go back to reference De Zaeytijd J, Franchois A, Eyraud C et al (2007) Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method—theory and experiment. IEEE Trans Antennas Propag 55(11):3279–3292CrossRef De Zaeytijd J, Franchois A, Eyraud C et al (2007) Full-wave three-dimensional microwave imaging with a regularized Gauss-Newton method—theory and experiment. IEEE Trans Antennas Propag 55(11):3279–3292CrossRef
60.
go back to reference Komijani M, Reddy JN, Eslami MR (2014) Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators. J Mech Phys Solids 63:214–227MathSciNetCrossRef Komijani M, Reddy JN, Eslami MR (2014) Nonlinear analysis of microstructure-dependent functionally graded piezoelectric material actuators. J Mech Phys Solids 63:214–227MathSciNetCrossRef
61.
go back to reference Yang J, Kitipornchai S, Liew KM (2004) Non-linear analysis of the thermo-electro-mechanical behaviour of shear deformable FGM plates with piezoelectric actuators. Int J Numer Methods Eng 59(12):1605–1632CrossRef Yang J, Kitipornchai S, Liew KM (2004) Non-linear analysis of the thermo-electro-mechanical behaviour of shear deformable FGM plates with piezoelectric actuators. Int J Numer Methods Eng 59(12):1605–1632CrossRef
Metadata
Title
Numerical Methods for Solving Nonlinear Equations
Authors
Narges Mohammadi
Shahram Mehdipour-Ataei
Maryam Mohammadi
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-62191-9_5