Skip to main content
Top
Published in: Fire Technology 3/2011

01-07-2011

Numerical Modeling of Heat and Moisture Through Wet Cotton Fabric Using the Method of Chemical Thermodynamic Law Under Simulated Fire

Authors: Fanglong Zhu, Kejing Li

Published in: Fire Technology | Issue 3/2011

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper deals with numerical modeling of heat and moisture transfer behavior of a fabric slab during combined drying and pyrolysis. The model incorporates the heat-induced changes in fabric thermo physical properties and the drying process is described by a one-step chemical reaction in the model. The new model has been validated by experimental data from modified Radiant Protective Performance (RPP) tests of fabrics. Comparisons with experimental data show that the predictions of mass loss rates, temperature profiles within the charring material and skin simulant, and the required time to 2nd skin burn are in reasonably good agreement with the experiments. It is concluded that moisture increases the time to 2nd degree skin burn for fabrics exposed to low intensity heat flux of 21 kW/m2, but under high heat flux exposures, such as 42 kW/m2, moisture tend to increase heat transfer through the thermal protective fabric system and the tolerance time of the same fabrics will reduce. The model can find applications not only in thermal protective clothing design, but also in other scientific and engineering fields involving heat transfer in porous media.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jose TW, Janine EP (1993) Thermal decomposition of cotton cellulose treated with selected salts. Thermoch Acta 226:257–263CrossRef Jose TW, Janine EP (1993) Thermal decomposition of cotton cellulose treated with selected salts. Thermoch Acta 226:257–263CrossRef
2.
go back to reference Behnke WP (1977) Thermal protective performance test for clothing. Fire Technol 1:6–12CrossRef Behnke WP (1977) Thermal protective performance test for clothing. Fire Technol 1:6–12CrossRef
3.
go back to reference Zhu FL, Zhang WY (2009) Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux. J Fire Sci 27(1):81–96CrossRef Zhu FL, Zhang WY (2009) Modeling heat transfer for heat-resistant fabrics considering pyrolysis effect under an external heat flux. J Fire Sci 27(1):81–96CrossRef
4.
go back to reference Carles JE, Scallan AM (1973) The determination of the amount of bound water within cellulosic gels by NMR spectroscopy. J Appl Polym Sci 17(6):1855–1865CrossRef Carles JE, Scallan AM (1973) The determination of the amount of bound water within cellulosic gels by NMR spectroscopy. J Appl Polym Sci 17(6):1855–1865CrossRef
5.
go back to reference Zeronian SH et al (1980) Influence of moisture on the flame retardance of textile fabrics. J Appl Polym Sci 25(7):1311–1322CrossRef Zeronian SH et al (1980) Influence of moisture on the flame retardance of textile fabrics. J Appl Polym Sci 25(7):1311–1322CrossRef
6.
go back to reference Li Y, Luo ZX (1999) An improved mathematical simulation of the coupled diffusion of moisture and heat in wool fabric. Tex Res J 69(10):760–768MathSciNetCrossRef Li Y, Luo ZX (1999) An improved mathematical simulation of the coupled diffusion of moisture and heat in wool fabric. Tex Res J 69(10):760–768MathSciNetCrossRef
7.
go back to reference Chitrphiromsri P, Kuznetsov AV (2005) Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure. Heat Mass Transf 41:206–215 Chitrphiromsri P, Kuznetsov AV (2005) Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure. Heat Mass Transf 41:206–215
8.
go back to reference Whitaker S (1977) Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv Heat Transf 13:119–203CrossRef Whitaker S (1977) Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Adv Heat Transf 13:119–203CrossRef
9.
go back to reference Chan WR et al (1985) Modeling and experimental verification of physical and chemical process during pyrolysis of a large biomass particle. Fuel 64:1505–1513CrossRef Chan WR et al (1985) Modeling and experimental verification of physical and chemical process during pyrolysis of a large biomass particle. Fuel 64:1505–1513CrossRef
10.
go back to reference Yu BM, Lee JE (2002) A fractal in-plane permeability model for fabrics. Polym Compos 23(2): 201–221CrossRef Yu BM, Lee JE (2002) A fractal in-plane permeability model for fabrics. Polym Compos 23(2): 201–221CrossRef
11.
go back to reference Zhu FL, Zhang WY (2006) Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model. J Fire Sci 24(11):465–485CrossRef Zhu FL, Zhang WY (2006) Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model. J Fire Sci 24(11):465–485CrossRef
12.
go back to reference Cattaneo C (1958) A Form of heat conduction equation which eliminates. The paradox of instantaneous propagation. Comptes Rendus 247:431–433MathSciNet Cattaneo C (1958) A Form of heat conduction equation which eliminates. The paradox of instantaneous propagation. Comptes Rendus 247:431–433MathSciNet
13.
go back to reference Pennes HH (1948) Analysis of tissue and arterial blood temperatures in resting human forearm. J Appl Physiol 1:122 Pennes HH (1948) Analysis of tissue and arterial blood temperatures in resting human forearm. J Appl Physiol 1:122
14.
go back to reference Liu J et al (1999) New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans Biomed Eng 46(4):420–428CrossRef Liu J et al (1999) New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Trans Biomed Eng 46(4):420–428CrossRef
15.
go back to reference SFPE Task Group on Engineering Practices (2000) Predicting 1st and 2nd degree skin burns from thermal radiation. Society of Fire Protection Engineers, Bethesda, MD SFPE Task Group on Engineering Practices (2000) Predicting 1st and 2nd degree skin burns from thermal radiation. Society of Fire Protection Engineers, Bethesda, MD
16.
go back to reference Henriques FC, Moritz AR (1947) Studies of thermal injury, I. The conduction of heat to and through skin and the temperature attained therein. A theoretical and an experimental investigation. Am J Pathol 23:531–549 Henriques FC, Moritz AR (1947) Studies of thermal injury, I. The conduction of heat to and through skin and the temperature attained therein. A theoretical and an experimental investigation. Am J Pathol 23:531–549
17.
go back to reference Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing, Washington, DCMATH Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing, Washington, DCMATH
18.
go back to reference Douglas J (1961) A survey of numerical method for parabolic differential equation. Adv Comput 2:1–52CrossRefMATH Douglas J (1961) A survey of numerical method for parabolic differential equation. Adv Comput 2:1–52CrossRefMATH
19.
go back to reference Kung HC (1972) A mathematical model of wood pyrolysis. Combust Flame 18:185–195CrossRef Kung HC (1972) A mathematical model of wood pyrolysis. Combust Flame 18:185–195CrossRef
20.
go back to reference NFPA 1971(2007) Standard on protective ensembles for structural fire fighting and proximity fire fighting. National Fire Protection Association, Boston NFPA 1971(2007) Standard on protective ensembles for structural fire fighting and proximity fire fighting. National Fire Protection Association, Boston
21.
go back to reference ASTM D 4108 (1987) Standard test method for thermal performance of materials for clothing by open-flame method. American Society for Testing and Materials, Academic Press, Inc, Florida ASTM D 4108 (1987) Standard test method for thermal performance of materials for clothing by open-flame method. American Society for Testing and Materials, Academic Press, Inc, Florida
22.
go back to reference NFPA 1977 (1996) Standard on protective clothing and equipment for wildland fire fighting. National Fire Protection Association, Quincy, MA NFPA 1977 (1996) Standard on protective clothing and equipment for wildland fire fighting. National Fire Protection Association, Quincy, MA
23.
go back to reference Zhu FL et al (2009) Modeling multi-stage decomposition of cotton fabrics considering char oxidation in the presence of oxygen. Fire Mater 33(8):395–411CrossRef Zhu FL et al (2009) Modeling multi-stage decomposition of cotton fabrics considering char oxidation in the presence of oxygen. Fire Mater 33(8):395–411CrossRef
24.
go back to reference Keltner N (2005) Evaluating thermal protective performance testing. J ASTM Int 2(5):1–14CrossRef Keltner N (2005) Evaluating thermal protective performance testing. J ASTM Int 2(5):1–14CrossRef
25.
go back to reference Panton RL, Rittman JG (1971) Pyrolysis of a slab of porous material. In: Thirteen symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 881–891 Panton RL, Rittman JG (1971) Pyrolysis of a slab of porous material. In: Thirteen symposium (international) on combustion. The Combustion Institute, Pittsburgh, pp 881–891
26.
go back to reference Lawson JR, Vettori RL (2002) Thermal measurements for fire fighters’ protective clothing. In: Gritzo LA, Alvares NJ (eds) Thermal measurements: the foundation of fire standards (STP 1427). American Society for Testing and Materials, West Conshohocken, PA, pp 163–177 Lawson JR, Vettori RL (2002) Thermal measurements for fire fighters’ protective clothing. In: Gritzo LA, Alvares NJ (eds) Thermal measurements: the foundation of fire standards (STP 1427). American Society for Testing and Materials, West Conshohocken, PA, pp 163–177
27.
go back to reference Patriop C, Andrey VK (2005) Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure. Heat Mass Transf 41:206–215 Patriop C, Andrey VK (2005) Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure. Heat Mass Transf 41:206–215
Metadata
Title
Numerical Modeling of Heat and Moisture Through Wet Cotton Fabric Using the Method of Chemical Thermodynamic Law Under Simulated Fire
Authors
Fanglong Zhu
Kejing Li
Publication date
01-07-2011
Publisher
Springer US
Published in
Fire Technology / Issue 3/2011
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-010-0201-x

Other articles of this Issue 3/2011

Fire Technology 3/2011 Go to the issue