Skip to main content
Top
Published in:

26-07-2023

Numerical simulation of a mixed-halide perovskite solar cell using doping gradient

Authors: Ritu, Gagandeep, Ramesh Kumar, Fakir Chand

Published in: Journal of Computational Electronics | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, the simulation of a perovskite solar cell with the composition FTO/SnO2/MAPbI3−xClx/PTAA/Au is performed using SCAPS-1D software. Initially, the absorber thickness, doping concentration of the absorber, charge transport layer, doping gradient and intensity are optimised to enhance the efficiency of the cell. After all optimisation, power conversion efficiency of 34.95% overall is obtained. This enhancement of solar device performance is due to proper band alignment and improved electric field. Both factors result in proper carrier transportation and reduced recombination. The simulated results are also compared with experimental results, and are in good agreement. In addition, the J–V and QE curves are compared. The outcomes of our simulations offer a method that is appropriate for cell production.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu, Y., Wang, D., Liu, J., Cai, H.: Review of interface passivation of perovskite layer. Nanomaterials 11(3), 775 (2021)CrossRef Wu, Y., Wang, D., Liu, J., Cai, H.: Review of interface passivation of perovskite layer. Nanomaterials 11(3), 775 (2021)CrossRef
2.
go back to reference Duan, Q., Ji, J., Hong, X., Fu, Y., Wang, C., Zhou, K., Liu, X., Yang, H., Wang, Z.Y.: Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy 201, 555–560 (2020)CrossRef Duan, Q., Ji, J., Hong, X., Fu, Y., Wang, C., Zhou, K., Liu, X., Yang, H., Wang, Z.Y.: Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy 201, 555–560 (2020)CrossRef
3.
go back to reference Obraztsov, P.A., Bulgakova, V.V., Chizhov, P.A., Ushakov, A.A., Gets, D.S., Makarov, S.V., Bukin, V.V.: Hybrid perovskite terahertz photoconductive antenna. Nanomaterials 11(2), 313 (2021)CrossRef Obraztsov, P.A., Bulgakova, V.V., Chizhov, P.A., Ushakov, A.A., Gets, D.S., Makarov, S.V., Bukin, V.V.: Hybrid perovskite terahertz photoconductive antenna. Nanomaterials 11(2), 313 (2021)CrossRef
4.
go back to reference Jamal, M.S., Bashar, M.S., Hasan, A.M., Almutairi, Z.A., Alharbi, H.F., Alharthi, N.H., Akhtaruzzaman, M.: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew. Sustain. Energy Rev. 98, 469 (2018)CrossRef Jamal, M.S., Bashar, M.S., Hasan, A.M., Almutairi, Z.A., Alharbi, H.F., Alharthi, N.H., Akhtaruzzaman, M.: Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency perovskite solar cell: a review. Renew. Sustain. Energy Rev. 98, 469 (2018)CrossRef
5.
go back to reference Song, D.H., Heo, J.H., Han, H.J., You, M.S., Im, S.H.: Reproducible formation of uniform CH3NH3PbI3−xClx mixed halide perovskite film by separation of the powder formation and spin-coating process. J. Power Sources 310, 130–136 (2016)CrossRef Song, D.H., Heo, J.H., Han, H.J., You, M.S., Im, S.H.: Reproducible formation of uniform CH3NH3PbI3−xClx mixed halide perovskite film by separation of the powder formation and spin-coating process. J. Power Sources 310, 130–136 (2016)CrossRef
6.
go back to reference Akhundova, F., Lüer, L., Osvet, A., Hauch, J., Peters, I.M., Forberich, K., Brabec, C.: Building process design rules for microstructure control in wide-bandgap mixed halide perovskite solar cells by a high-throughput approach. Appl. Phys. Lett. 118(24), 243903 (2021)CrossRef Akhundova, F., Lüer, L., Osvet, A., Hauch, J., Peters, I.M., Forberich, K., Brabec, C.: Building process design rules for microstructure control in wide-bandgap mixed halide perovskite solar cells by a high-throughput approach. Appl. Phys. Lett. 118(24), 243903 (2021)CrossRef
7.
go back to reference Ghahremanirad, E., Olyaee, S., Nejand, B.A., Nazari, P., Ahmadi, V., Abedi, K.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498 (2018)CrossRef Ghahremanirad, E., Olyaee, S., Nejand, B.A., Nazari, P., Ahmadi, V., Abedi, K.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498 (2018)CrossRef
8.
go back to reference Tong, G., Li, H., Li, G., Zhang, T., Li, C., Yu, L., Chen, K.: Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy 48, 536 (2018)CrossRef Tong, G., Li, H., Li, G., Zhang, T., Li, C., Yu, L., Chen, K.: Mixed cation perovskite solar cells by stack-sequence chemical vapor deposition with self-passivation and gradient absorption layer. Nano Energy 48, 536 (2018)CrossRef
9.
go back to reference Ghahremanirad, E., Olyaee, S., Hedayati, M.: The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cell. Photonics 6, 2 (2019)CrossRef Ghahremanirad, E., Olyaee, S., Hedayati, M.: The influence of embedded plasmonic nanostructures on the optical absorption of perovskite solar cell. Photonics 6, 2 (2019)CrossRef
10.
go back to reference Chen, Y., Zhang, M., Li, F., Yang, Z.: Recent progress in perovskite solar cells: status and future. Coatings 13(3), 644 (2023)CrossRef Chen, Y., Zhang, M., Li, F., Yang, Z.: Recent progress in perovskite solar cells: status and future. Coatings 13(3), 644 (2023)CrossRef
11.
go back to reference Wei, X., Zhang, P., Bai, Y., Chen, Q.: In Halide Perovskites for Photonics, pp. 3–1. AIP Publishing LLC., Melville, New York (2021) Wei, X., Zhang, P., Bai, Y., Chen, Q.: In Halide Perovskites for Photonics, pp. 3–1. AIP Publishing LLC., Melville, New York (2021)
12.
go back to reference Mehdi, H., Mhamdi, A., Bouazizi, A.: Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3-xClx mixed halide perovskite solar cells. Mater. Sci. Semicond. Process. 109, 104915 (2020)CrossRef Mehdi, H., Mhamdi, A., Bouazizi, A.: Effect of perovskite precursor ratios and solvents volume on the efficiency of MAPbI3-xClx mixed halide perovskite solar cells. Mater. Sci. Semicond. Process. 109, 104915 (2020)CrossRef
13.
go back to reference Lian, Z., Yan, Q., Gao, T., Ding, J., Lv, Q., Ning, C., Sun, J.L.: Perovskite CH3NH3PbI3 (Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 138(30), 9409–9412 (2016)CrossRef Lian, Z., Yan, Q., Gao, T., Ding, J., Lv, Q., Ning, C., Sun, J.L.: Perovskite CH3NH3PbI3 (Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm–3. J. Am. Chem. Soc. 138(30), 9409–9412 (2016)CrossRef
14.
go back to reference Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRef Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)CrossRef
15.
go back to reference Mehdi, H., Matheron, M., Mhamdi, A., Manceau, M., Roux, C., Berson, S., Bouazizi, A.: Correlation between efficiency and device characterization in MAPbI 3-x Cl x standard perovskite solar cells. J. Mater. Sci.: Mater. Electron. 31(13), 10251–10259 (2020) Mehdi, H., Matheron, M., Mhamdi, A., Manceau, M., Roux, C., Berson, S., Bouazizi, A.: Correlation between efficiency and device characterization in MAPbI 3-x Cl x standard perovskite solar cells. J. Mater. Sci.: Mater. Electron. 31(13), 10251–10259 (2020)
16.
go back to reference Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000)CrossRef Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527 (2000)CrossRef
17.
go back to reference Burgelman, M., Decock, K., Khelifi, S., Abass, A.: Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296 (2013)CrossRef Burgelman, M., Decock, K., Khelifi, S., Abass, A.: Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296 (2013)CrossRef
18.
go back to reference Hazeghi, F., Ghorashi, S.M.B.: Simulation of perovskite solar cells by using CuSCN as an inorganic hole-transport material. Mater. Res. Express 6(9), 095527 (2019)CrossRef Hazeghi, F., Ghorashi, S.M.B.: Simulation of perovskite solar cells by using CuSCN as an inorganic hole-transport material. Mater. Res. Express 6(9), 095527 (2019)CrossRef
19.
go back to reference Walukiewicz, W.: Amphoteric native defects in semiconductors. Appl. Phys. Lett. 54(21), 2094–2096 (1989)CrossRef Walukiewicz, W.: Amphoteric native defects in semiconductors. Appl. Phys. Lett. 54(21), 2094–2096 (1989)CrossRef
20.
go back to reference Bhattarai, S., Hossain, I., Maiti, M., Pandey, R., and Madan, J. (2023) Performance analysis and optimization of all-inorganic CsPbI3-based perovskite solar cell. Indian J. Phys. 1–9. Bhattarai, S., Hossain, I., Maiti, M., Pandey, R., and Madan, J. (2023) Performance analysis and optimization of all-inorganic CsPbI3-based perovskite solar cell. Indian J. Phys. 1–9.
21.
go back to reference Jannat, F., Ahmed, S., Alim, M.A.: Performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D. Optik 228, 166202 (2021)CrossRef Jannat, F., Ahmed, S., Alim, M.A.: Performance analysis of cesium formamidinium lead mixed halide based perovskite solar cell with MoOx as hole transport material via SCAPS-1D. Optik 228, 166202 (2021)CrossRef
22.
go back to reference Ritu, Gagandeep, Kumar, R., Chand, F.: Performance enhancement in MA0.7FA0.3PbI3 based perovskite solar cell by gradient doping. Optik 274, 170558 (2023)CrossRef Ritu, Gagandeep, Kumar, R., Chand, F.: Performance enhancement in MA0.7FA0.3PbI3 based perovskite solar cell by gradient doping. Optik 274, 170558 (2023)CrossRef
23.
go back to reference Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K.A., Suklueng, M.: Results in Physics 16, 102839 (2020)CrossRef Chowdhury, M.S., Shahahmadi, S.A., Chelvanathan, P., Tiong, S.K., Amin, N., Techato, K.A., Suklueng, M.: Results in Physics 16, 102839 (2020)CrossRef
24.
go back to reference Islam, M., Jani, M., Rahman, S., Shorowordi, K.M., Nishat, S.S., Hodges, D., Ahmed, S.: Investigation of non-Pb all-perovskite 4-T mechanically stacked and 2-T monolithic tandem solar devices utilizing SCAPS simulation. SN Appl. Sci. 3(4), 1 (2021)CrossRef Islam, M., Jani, M., Rahman, S., Shorowordi, K.M., Nishat, S.S., Hodges, D., Ahmed, S.: Investigation of non-Pb all-perovskite 4-T mechanically stacked and 2-T monolithic tandem solar devices utilizing SCAPS simulation. SN Appl. Sci. 3(4), 1 (2021)CrossRef
25.
go back to reference Oublal, E., Ait Abdelkadir, A., Sahal, M.: J. Nanopart. Res. 24(10), 1 (2022)CrossRef Oublal, E., Ait Abdelkadir, A., Sahal, M.: J. Nanopart. Res. 24(10), 1 (2022)CrossRef
26.
go back to reference Yiğit Gezgin, S., Kiliç, H.Ş: The effect of Ag plasmonic nanoparticles on the efficiency of CZTS solar cell: an experimental investigation and numerical modelling. Indian J. Phys. 97(3), 779–796 (2023)CrossRef Yiğit Gezgin, S., Kiliç, H.Ş: The effect of Ag plasmonic nanoparticles on the efficiency of CZTS solar cell: an experimental investigation and numerical modelling. Indian J. Phys. 97(3), 779–796 (2023)CrossRef
27.
go back to reference Raza, E., Ahmad, Z., Aziz, F., Asif, M., Ahmed, A., Riaz, K., Al-Thani, N.J.: Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance. Sol. Energy 225, 842 (2021)CrossRef Raza, E., Ahmad, Z., Aziz, F., Asif, M., Ahmed, A., Riaz, K., Al-Thani, N.J.: Numerical simulation analysis towards the effect of charge transport layers electrical properties on cesium based ternary cation perovskite solar cells performance. Sol. Energy 225, 842 (2021)CrossRef
28.
go back to reference Ritu, G., Kumar, R., and Chand, F. Studies, 3, 4. Ritu, G., Kumar, R., and Chand, F. Studies3, 4.
29.
go back to reference Abdelaziz, S., Zekry, A., Shaker, A., Abouelatta, M.: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020)CrossRef Abdelaziz, S., Zekry, A., Shaker, A., Abouelatta, M.: Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater. 101, 109738 (2020)CrossRef
30.
go back to reference Tara, A., Bharti, V., Sharma, S., Gupta, R.: Device simulation of FASnI3 based perovskite solar cell with Zn (O0.3, S0.7) as electron transport layer using SCAPS-1D Opt. Material 119, 111362 (2021) Tara, A., Bharti, V., Sharma, S., Gupta, R.: Device simulation of FASnI3 based perovskite solar cell with Zn (O0.3, S0.7) as electron transport layer using SCAPS-1D Opt. Material 119, 111362 (2021)
31.
go back to reference Lin, L., Li, P., Jiang, L., Kang, Z., Yan, Q., Xiong, H., Qiu, Y.: Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation. Sol. Energy 215, 328 (2021)CrossRef Lin, L., Li, P., Jiang, L., Kang, Z., Yan, Q., Xiong, H., Qiu, Y.: Boosting efficiency up to 25% for HTL-free carbon-based perovskite solar cells by gradient doping using SCAPS simulation. Sol. Energy 215, 328 (2021)CrossRef
32.
go back to reference Mukherjee, I., Somay, S., Pandey, S.K.: Comprehensive device modeling and performance analysis of quantum dot-Perovskite solar cells. J. Electron. Mater. 51(4), 1524 (2022)CrossRef Mukherjee, I., Somay, S., Pandey, S.K.: Comprehensive device modeling and performance analysis of quantum dot-Perovskite solar cells. J. Electron. Mater. 51(4), 1524 (2022)CrossRef
33.
go back to reference Gomard, G., Peretti, R., Drouard, E., Meng, X., Seassal, C.: Photonic crystals and optical mode engineering for thin film photovoltaics. Opt. Express 21(103), A515–A527 (2013)CrossRef Gomard, G., Peretti, R., Drouard, E., Meng, X., Seassal, C.: Photonic crystals and optical mode engineering for thin film photovoltaics. Opt. Express 21(103), A515–A527 (2013)CrossRef
34.
go back to reference Aliaghayee, M.: Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D. J. Electron. Mater. 52(4), 2475–2491 (2023)CrossRef Aliaghayee, M.: Optimization of the perovskite solar cell design with layer thickness engineering for improving the photovoltaic response using SCAPS-1D. J. Electron. Mater. 52(4), 2475–2491 (2023)CrossRef
35.
go back to reference Rai, N., Rai, S., Singh, P.K., Lohia, P., Dwivedi, D.K.: Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci.: Mater. Electron. 31(19), 16269 (2020) Rai, N., Rai, S., Singh, P.K., Lohia, P., Dwivedi, D.K.: Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci.: Mater. Electron. 31(19), 16269 (2020)
Metadata
Title
Numerical simulation of a mixed-halide perovskite solar cell using doping gradient
Authors
Ritu
Gagandeep
Ramesh Kumar
Fakir Chand
Publication date
26-07-2023
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 5/2023
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02085-x