Skip to main content
Top
Published in: Journal of Electronic Materials 4/2021

15-01-2021 | Original Research Article

Numerical Simulation of CZTSe Based Solar Cells Using Different Back Surface Field Layers: Improvement and Comparison

Authors: Rkia El Otmani, Ahmed El Manouni, Abdelmajid Al Maggoussi

Published in: Journal of Electronic Materials | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work reports on a numerical modeling of Cu2ZnSnSe4 (CZTSe) thin film based solar cells using Solar Cell Capacitance Simulator (SCAPS). First, a conventional CZTSe/CdS/ZnO solar cell structure has been proposed and optimized. The optimal output parameters (power conversion efficiency PCE = 24.50%, short circuit current density Jsc = 47.732 mA/cm2, fill factor FF = 80.478% and open circuit voltage Voc = 0.639 V) have been obtained for ZnO, CdS and CZTSe layer thicknesses closed to 0.02 μm, 0.02 μm and 1.5 μm, respectively. Next, to improve on the conventional solar cell performance, three cell structures with different highly P-doped materials as back surface field (BSF) layers, such as P+-CZTSe, P+-Cu2O and P+-CZTS, have been proposed and optimized. In comparison to the conventional cell, devices with BSF layer have shown improvements of all the photovoltaic parameters. The CZTS/CZTSe/CdS/ZnO device has provided the highest performance (PCE = 25.83%, Jsc = 51.04 mA/cm2, FF = 78.14% and Voc = 0.646 V) for ZnO, CdS, CZTSe and P+-CZTS thicknesses closed to 0.02 μm, 0.02 μm, 1.5 μm and 0.4 µm, respectively. Additionally, the generation rate is no affected by the BSF layer; however, the recombination rate has decreased in the bulk and back surface of the CZTSe absorber. Finally, the insertion of the BSF layer has caused an increase of external quantum efficiency (EQE) up to 94.5% and a slight red shift of absorption in the long-wavelength region near the band edge.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J.H. Ebinger, and A.W.H. Ho-Baillie, M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J.H. Ebinger, and A.W.H. Ho-Baillie, Prog. Photovolt. Res. Appl., 2017, 25, p 668.CrossRef M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J.H. Ebinger, and A.W.H. Ho-Baillie, M.A. Green, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, J.H. Ebinger, and A.W.H. Ho-Baillie, Prog. Photovolt. Res. Appl., 2017, 25, p 668.CrossRef
2.
go back to reference T. Kato, A. Handa, T. Yagioka, T. Matsuura, K. Yamamoto, S. Higashi, J.-L. Wu, K.F. Tai, H. Hiroi, T. Yoshiyama, T. Sakai, and H. Sugimoto, T. Kato, A. Handa, T. Yagioka, T. Matsuura, K. Yamamoto, S. Higashi, J.-L. Wu, K.F. Tai, H. Hiroi, T. Yoshiyama, T. Sakai, and H. Sugimoto, IEEE J. Photovolt., 2017, 7, p 1773.CrossRef T. Kato, A. Handa, T. Yagioka, T. Matsuura, K. Yamamoto, S. Higashi, J.-L. Wu, K.F. Tai, H. Hiroi, T. Yoshiyama, T. Sakai, and H. Sugimoto, T. Kato, A. Handa, T. Yagioka, T. Matsuura, K. Yamamoto, S. Higashi, J.-L. Wu, K.F. Tai, H. Hiroi, T. Yoshiyama, T. Sakai, and H. Sugimoto, IEEE J. Photovolt., 2017, 7, p 1773.CrossRef
3.
go back to reference Y. Kee-Jeong, S. Dae-Ho, S. Shi-Joon, S. Jun-Hyoung, K. Young-Ill, P. Si-Nae, J. Dong-Hwan, K. JungSik, H. Dae-Kue, J. Chan-Wook, N. Dahyun, C. Hyeonsik, K. Jin-Kyu, and K. Dae-Hwan, Y. Kee-Jeong, S. Dae-Ho, S. Shi-Joon, S. Jun-Hyoung, K. Young-Ill, P. Si-Nae, J. Dong-Hwan, K. JungSik, H. Dae-Kue, J. Chan-Wook, N. Dahyun, C. Hyeonsik, K. Jin-Kyu, and K. Dae-Hwan, J. Mater. Chem. A, 2016, 4, p 10151.CrossRef Y. Kee-Jeong, S. Dae-Ho, S. Shi-Joon, S. Jun-Hyoung, K. Young-Ill, P. Si-Nae, J. Dong-Hwan, K. JungSik, H. Dae-Kue, J. Chan-Wook, N. Dahyun, C. Hyeonsik, K. Jin-Kyu, and K. Dae-Hwan, Y. Kee-Jeong, S. Dae-Ho, S. Shi-Joon, S. Jun-Hyoung, K. Young-Ill, P. Si-Nae, J. Dong-Hwan, K. JungSik, H. Dae-Kue, J. Chan-Wook, N. Dahyun, C. Hyeonsik, K. Jin-Kyu, and K. Dae-Hwan, J. Mater. Chem. A, 2016, 4, p 10151.CrossRef
4.
go back to reference W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater., 2014, 4, p 1301465.CrossRef W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi, Adv. Energy Mater., 2014, 4, p 1301465.CrossRef
5.
go back to reference G. Brammertz, M. Buffière, S. Oueslati, H. ElAnzeery, K. Ben Messaoud, S. Sahayaraj, C. Köble, M. Meuris, and J. Poortmans, J. Appl. Phys. Lett. 103, 163904 (2013). G. Brammertz, M. Buffière, S. Oueslati, H. ElAnzeery, K. Ben Messaoud, S. Sahayaraj, C. Köble, M. Meuris, and J. Poortmans, J. Appl. Phys. Lett. 103, 163904 (2013).
6.
go back to reference S. Siebentritt, and S. Schorr, S. Siebentritt, and S. Schorr, Prog. Photovolt. Res. Appl., 2012, 20, p 512.CrossRef S. Siebentritt, and S. Schorr, S. Siebentritt, and S. Schorr, Prog. Photovolt. Res. Appl., 2012, 20, p 512.CrossRef
7.
go back to reference D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha, D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells, 2011, 95, p 1421.CrossRef D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha, D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha, Sol. Energy Mater. Sol. Cells, 2011, 95, p 1421.CrossRef
8.
go back to reference C. Guilin, W. Weihuang, C. Shuiyuan, W. Zhezhe, H. Zhigao, Z. Biyun, and K. Xiangkai, C. Guilin, W. Weihuang, C. Shuiyuan, W. Zhezhe, H. Zhigao, Z. Biyun, and K. Xiangkai, J. Alloys Compd., 2017, 718, p 236.CrossRef C. Guilin, W. Weihuang, C. Shuiyuan, W. Zhezhe, H. Zhigao, Z. Biyun, and K. Xiangkai, C. Guilin, W. Weihuang, C. Shuiyuan, W. Zhezhe, H. Zhigao, Z. Biyun, and K. Xiangkai, J. Alloys Compd., 2017, 718, p 236.CrossRef
9.
go back to reference B. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, and H.W. Schock, B. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, and H.W. Schock, Prog. Photovolt. Res. Appl., 2011, 19, p 93.CrossRef B. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, and H.W. Schock, B. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, and H.W. Schock, Prog. Photovolt. Res. Appl., 2011, 19, p 93.CrossRef
10.
go back to reference D.B. Mitzi, O. Gunawan, T.K. Todorov, and D.A.R. Barkhouse, D.B. Mitzi, O. Gunawan, T.K. Todorov, and D.A.R. Barkhouse, Phil. Trans. R. Soc. A, 2013, 371, p 20110432.CrossRef D.B. Mitzi, O. Gunawan, T.K. Todorov, and D.A.R. Barkhouse, D.B. Mitzi, O. Gunawan, T.K. Todorov, and D.A.R. Barkhouse, Phil. Trans. R. Soc. A, 2013, 371, p 20110432.CrossRef
11.
go back to reference S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, A. Lafond, F. Donatini, G. Rey, S. Siebentritt, A. Walsh, and G. Dennler, Adv. Energy Mater. 6, 1502276 (2016). S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, A. Lafond, F. Donatini, G. Rey, S. Siebentritt, A. Walsh, and G. Dennler, Adv. Energy Mater. 6, 1502276 (2016).
12.
go back to reference A. Luque, and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd edn. John Wiley and Sons, Ltd, 2011, p 1–1106CrossRef A. Luque, and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2nd edn. John Wiley and Sons, Ltd, 2011, p 1–1106CrossRef
13.
go back to reference T.J. Huang, X. Yin, G. Qi, and H. Gong, T.J. Huang, X. Yin, G. Qi, and H. Gong, Phys. Status Solidi-R, 2014, 8, p 735.CrossRef T.J. Huang, X. Yin, G. Qi, and H. Gong, T.J. Huang, X. Yin, G. Qi, and H. Gong, Phys. Status Solidi-R, 2014, 8, p 735.CrossRef
14.
go back to reference S.N. Hood, A. Walsh, C. Persson, K. Iordanidou, D. Huang, M. Kumar, Z. Jehl, M. Courel, J. Lauwaert, and S. Lee, S.N. Hood, A. Walsh, C. Persson, K. Iordanidou, D. Huang, M. Kumar, Z. Jehl, M. Courel, J. Lauwaert, and S. Lee, J. Phys. Energy, 2019, 1, p 042004.CrossRef S.N. Hood, A. Walsh, C. Persson, K. Iordanidou, D. Huang, M. Kumar, Z. Jehl, M. Courel, J. Lauwaert, and S. Lee, S.N. Hood, A. Walsh, C. Persson, K. Iordanidou, D. Huang, M. Kumar, Z. Jehl, M. Courel, J. Lauwaert, and S. Lee, J. Phys. Energy, 2019, 1, p 042004.CrossRef
15.
go back to reference S. Chen, A. Walsh, X.G. Gong, and S.-H. Wei, S. Chen, A. Walsh, X.G. Gong, and S.-H. Wei, Adv. Mater., 2013, 25, p 1522.CrossRef S. Chen, A. Walsh, X.G. Gong, and S.-H. Wei, S. Chen, A. Walsh, X.G. Gong, and S.-H. Wei, Adv. Mater., 2013, 25, p 1522.CrossRef
16.
go back to reference K. Yang, J. Sim, D. Son, D. Kim, G.Y. Kim, W. Jo, S. Song, J. Kim, D. Nam, H. Cheong, and J. Kang, K. Yang, J. Sim, D. Son, D. Kim, G.Y. Kim, W. Jo, S. Song, J. Kim, D. Nam, H. Cheong, and J. Kang, Prog. Photovoltaics, 2015, 23, p 1771.CrossRef K. Yang, J. Sim, D. Son, D. Kim, G.Y. Kim, W. Jo, S. Song, J. Kim, D. Nam, H. Cheong, and J. Kang, K. Yang, J. Sim, D. Son, D. Kim, G.Y. Kim, W. Jo, S. Song, J. Kim, D. Nam, H. Cheong, and J. Kang, Prog. Photovoltaics, 2015, 23, p 1771.CrossRef
17.
go back to reference K. SeongYeon, K. JunHo, R. Rana Tanka, K. Kang-Woo, and K. Myeung-Hoi, Curr. Appl. Phys. 18, 191 (2018). K. SeongYeon, K. JunHo, R. Rana Tanka, K. Kang-Woo, and K. Myeung-Hoi, Curr. Appl. Phys. 18, 191 (2018).
18.
go back to reference B. Khadka Dhruba, K. SeongYeon, and K. JunHo, J. Phys. Chem. C 119, 12226 (2015). B. Khadka Dhruba, K. SeongYeon, and K. JunHo, J. Phys. Chem. C 119, 12226 (2015).
19.
go back to reference T. Kato, N.Y. Sakai and H.K. Sugimoto, in 40th Photovoltaic Specialist Conference IEEE (2014), pp. 0844–0846. T. Kato, N.Y. Sakai and H.K. Sugimoto, in 40th Photovoltaic Specialist Conference IEEE (2014), pp. 0844–0846.
20.
go back to reference J. Jong-Ok, L. Kee Doo, O. Lee Seul, S. Se-Won, L. Doh-Kwon, K. Honggon, J. Jeung-Hyun, K. Min Jae, K. BongSoo, S. Hae Jung, and K. Jin Young, ChemSusChem 7, 1073 (2014). J. Jong-Ok, L. Kee Doo, O. Lee Seul, S. Se-Won, L. Doh-Kwon, K. Honggon, J. Jeung-Hyun, K. Min Jae, K. BongSoo, S. Hae Jung, and K. Jin Young, ChemSusChem 7, 1073 (2014).
21.
go back to reference L. Fang-I, Y. Jui-Fu, W. Yu-Ling, and K. Shou-Yi, L. Fang-I, Y. Jui-Fu, W. Yu-Ling, and K. Shou-Yi, Green Chem., 2017, 19, p 795.CrossRef L. Fang-I, Y. Jui-Fu, W. Yu-Ling, and K. Shou-Yi, L. Fang-I, Y. Jui-Fu, W. Yu-Ling, and K. Shou-Yi, Green Chem., 2017, 19, p 795.CrossRef
22.
go back to reference M.I. Khalil, R. Bernasconi, L. Pedrazzetti, A. Lucotti, A. Le Donne, S. Binetti, and L. Magagnina, M.I. Khalil, R. Bernasconi, L. Pedrazzetti, A. Lucotti, A. Le Donne, S. Binetti, and L. Magagnina, J. Electrochem. Soc., 2017, 164, p D302.CrossRef M.I. Khalil, R. Bernasconi, L. Pedrazzetti, A. Lucotti, A. Le Donne, S. Binetti, and L. Magagnina, M.I. Khalil, R. Bernasconi, L. Pedrazzetti, A. Lucotti, A. Le Donne, S. Binetti, and L. Magagnina, J. Electrochem. Soc., 2017, 164, p D302.CrossRef
23.
go back to reference O.K. Simya, B. Geetha Priyadarshini, K. Balachander, and A.M. Ashok, Mater. Res. Express 7, 016419 (2020). O.K. Simya, B. Geetha Priyadarshini, K. Balachander, and A.M. Ashok, Mater. Res. Express 7, 016419 (2020).
24.
go back to reference Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, Adv. Energy Mater., 2015, 5, p 1401372.CrossRef Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, and S. Guha, Adv. Energy Mater., 2015, 5, p 1401372.CrossRef
26.
27.
go back to reference M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Prog. Photovolt. Res. Appl., 2004, 12, p 143.CrossRef M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, M. Burgelman, J. Verschraegen, S. Degrave, and P. Nollet, Prog. Photovolt. Res. Appl., 2004, 12, p 143.CrossRef
28.
go back to reference N. Khoshsirat, and N.A.M. Yunus, in Nanoelectronics and Materials Development, ed by INTECH Open Science (2016), p. 41. N. Khoshsirat, and N.A.M. Yunus, in Nanoelectronics and Materials Development, ed by INTECH Open Science (2016), p. 41.
30.
go back to reference J.K. Grepstad, P.O. Gartland, and B.J. Slagsvold, J.K. Grepstad, P.O. Gartland, and B.J. Slagsvold, Surf. Sci., 1976, 57, p 348.CrossRef J.K. Grepstad, P.O. Gartland, and B.J. Slagsvold, J.K. Grepstad, P.O. Gartland, and B.J. Slagsvold, Surf. Sci., 1976, 57, p 348.CrossRef
31.
32.
go back to reference H. Bayad, A. El Manouni, B. Marí, Y.H. Khattak, S. Ullah, and F. Baig, H. Bayad, A. El Manouni, B. Marí, Y.H. Khattak, S. Ullah, and F. Baig, Opt. Quantum Electron., 2018, 50, p 259.CrossRef H. Bayad, A. El Manouni, B. Marí, Y.H. Khattak, S. Ullah, and F. Baig, H. Bayad, A. El Manouni, B. Marí, Y.H. Khattak, S. Ullah, and F. Baig, Opt. Quantum Electron., 2018, 50, p 259.CrossRef
33.
go back to reference O.K. Simya, A. Mahaboobbatcha, and K. Balachander, O.K. Simya, A. Mahaboobbatcha, and K. Balachander, Superlattices Microst., 2015, 82, p 248.CrossRef O.K. Simya, A. Mahaboobbatcha, and K. Balachander, O.K. Simya, A. Mahaboobbatcha, and K. Balachander, Superlattices Microst., 2015, 82, p 248.CrossRef
34.
go back to reference L. Heng-Rui, C. Shiyou, Z. Ying-Teng, H.J. Xiang, X.G. Gong, and W. Su-Huai, L. Heng-Rui, C. Shiyou, Z. Ying-Teng, H.J. Xiang, X.G. Gong, and W. Su-Huai, J. Appl. Phys., 2012, 112, p 093717.CrossRef L. Heng-Rui, C. Shiyou, Z. Ying-Teng, H.J. Xiang, X.G. Gong, and W. Su-Huai, L. Heng-Rui, C. Shiyou, Z. Ying-Teng, H.J. Xiang, X.G. Gong, and W. Su-Huai, J. Appl. Phys., 2012, 112, p 093717.CrossRef
35.
go back to reference W. Shockley, and W.T. Read, W. Shockley, and W.T. Read, Phys. Rev., 1952, 87, p 835.CrossRef W. Shockley, and W.T. Read, W. Shockley, and W.T. Read, Phys. Rev., 1952, 87, p 835.CrossRef
36.
go back to reference G.K. Paul, R. Ghosh, S.K. Bera, S. Bandyopadhyay, T. Sakurai, and K. Akimoto, G.K. Paul, R. Ghosh, S.K. Bera, S. Bandyopadhyay, T. Sakurai, and K. Akimoto, Chem. Phys. Lett., 2008, 463, p 117.CrossRef G.K. Paul, R. Ghosh, S.K. Bera, S. Bandyopadhyay, T. Sakurai, and K. Akimoto, G.K. Paul, R. Ghosh, S.K. Bera, S. Bandyopadhyay, T. Sakurai, and K. Akimoto, Chem. Phys. Lett., 2008, 463, p 117.CrossRef
37.
go back to reference B.L. Guo, Y.H. Chen, X.J. Liu, W.C. Liu, and A.D. Li, B.L. Guo, Y.H. Chen, X.J. Liu, W.C. Liu, and A.D. Li, AIP Adv., 2014, 4, p 097115.CrossRef B.L. Guo, Y.H. Chen, X.J. Liu, W.C. Liu, and A.D. Li, B.L. Guo, Y.H. Chen, X.J. Liu, W.C. Liu, and A.D. Li, AIP Adv., 2014, 4, p 097115.CrossRef
38.
go back to reference D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, and A. Subrahmanyam, D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, and A. Subrahmanyam, AIP Adv., 2015, 5, p 047143.CrossRef D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, and A. Subrahmanyam, D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, and A. Subrahmanyam, AIP Adv., 2015, 5, p 047143.CrossRef
39.
go back to reference J.W. Hodby, T.E. Jenkins, C. Schwab, H.H. Tamurag, and D. Trivich, J.W. Hodby, T.E. Jenkins, C. Schwab, H.H. Tamurag, and D. Trivich, J. Phys. C., 1976, 9, p 1429.CrossRef J.W. Hodby, T.E. Jenkins, C. Schwab, H.H. Tamurag, and D. Trivich, J.W. Hodby, T.E. Jenkins, C. Schwab, H.H. Tamurag, and D. Trivich, J. Phys. C., 1976, 9, p 1429.CrossRef
40.
go back to reference Z. Qingwei, Z. Yihe, Z. Fengshan, L. Fengzhu, Y. Ye, F. Feidi, and P.K. Chu, Z. Qingwei, Z. Yihe, Z. Fengshan, L. Fengzhu, Y. Ye, F. Feidi, and P.K. Chu, Chem. Eng. J., 2011, 171, p 61.CrossRef Z. Qingwei, Z. Yihe, Z. Fengshan, L. Fengzhu, Y. Ye, F. Feidi, and P.K. Chu, Z. Qingwei, Z. Yihe, Z. Fengshan, L. Fengzhu, Y. Ye, F. Feidi, and P.K. Chu, Chem. Eng. J., 2011, 171, p 61.CrossRef
41.
go back to reference Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F. Soldera, D. Horwat, F. Mucklich, and J.F. Pierson, Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F. Soldera, D. Horwat, F. Mucklich, and J.F. Pierson, Phys. Rev. B, 2016, 94, p 245418.CrossRef Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F. Soldera, D. Horwat, F. Mucklich, and J.F. Pierson, Y. Wang, S. Lany, J. Ghanbaja, Y. Fagot-Revurat, Y.P. Chen, F. Soldera, D. Horwat, F. Mucklich, and J.F. Pierson, Phys. Rev. B, 2016, 94, p 245418.CrossRef
42.
go back to reference T.K.S. Wong, S. Zhuk, S. Masudy-Panah, and G.K. Dalapati, T.K.S. Wong, S. Zhuk, S. Masudy-Panah, and G.K. Dalapati, Materials, 2016, 9, p 271.CrossRef T.K.S. Wong, S. Zhuk, S. Masudy-Panah, and G.K. Dalapati, T.K.S. Wong, S. Zhuk, S. Masudy-Panah, and G.K. Dalapati, Materials, 2016, 9, p 271.CrossRef
43.
go back to reference A. Niemegeers, M. Burgelman, and A. DeVos, A. Niemegeers, M. Burgelman, and A. DeVos, Appl. Phys. Lett., 1995, 67, p 843.CrossRef A. Niemegeers, M. Burgelman, and A. DeVos, A. Niemegeers, M. Burgelman, and A. DeVos, Appl. Phys. Lett., 1995, 67, p 843.CrossRef
44.
go back to reference A. Redinger, M. Mousel, M.H. Wolter, N. Valle, and S. Siebentritt, A. Redinger, M. Mousel, M.H. Wolter, N. Valle, and S. Siebentritt, Thin Solid Films, 2013, 535, p 291.CrossRef A. Redinger, M. Mousel, M.H. Wolter, N. Valle, and S. Siebentritt, A. Redinger, M. Mousel, M.H. Wolter, N. Valle, and S. Siebentritt, Thin Solid Films, 2013, 535, p 291.CrossRef
45.
go back to reference I. Repins, C. Beall, N. Vora, C. Dehart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, and R. Noufi, I. Repins, C. Beall, N. Vora, C. Dehart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells, 2012, 101, p 154.CrossRef I. Repins, C. Beall, N. Vora, C. Dehart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, and R. Noufi, I. Repins, C. Beall, N. Vora, C. Dehart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.C. Hsu, A. Goodrich, and R. Noufi, Sol. Energy Mater. Sol. Cells, 2012, 101, p 154.CrossRef
46.
go back to reference H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, and T. Motohiro, H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, and T. Motohiro, Appl. Phys. Express, 2008, 1, p 041201.CrossRef H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, and T. Motohiro, H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, and T. Motohiro, Appl. Phys. Express, 2008, 1, p 041201.CrossRef
47.
Metadata
Title
Numerical Simulation of CZTSe Based Solar Cells Using Different Back Surface Field Layers: Improvement and Comparison
Authors
Rkia El Otmani
Ahmed El Manouni
Abdelmajid Al Maggoussi
Publication date
15-01-2021
Publisher
Springer US
Published in
Journal of Electronic Materials / Issue 4/2021
Print ISSN: 0361-5235
Electronic ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08712-8

Other articles of this Issue 4/2021

Journal of Electronic Materials 4/2021 Go to the issue