Skip to main content
Top
Published in: Physics of Metals and Metallography 3/2021

01-03-2021 | ELECTRICAL AND MAGNETIC PROPERTIES

Numerical Simulation of the Influence of Inhomogeneities on the Properties of Magnetization Nanostructures

Authors: L. G. Korzunin, I. M. Izmozherov

Published in: Physics of Metals and Metallography | Issue 3/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work provides a review of the existing micromagnetic models of the interaction of magnetization structures with inhomogeneities with different magnetic properties and geometries. Most attention is paid to models of the interaction of domain walls with defects in thin magnetic films. This work also gives a brief overview of studies of magnetic structures associated with inhomogeneities of systems that are currently being intensively studied, such as antidot arrays in permalloy, cobalt, and composite films, skyrmions and skyrmion lattices, and materials with a granular and porous structure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Hubert and R. Shäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Encyclopedia of Condensed Matter Physics, 3rd ed. (Springer, New York, 1998), p. 686. A. Hubert and R. Shäfer, Magnetic Domains: The Analysis of Magnetic Microstructures, Encyclopedia of Condensed Matter Physics, 3rd ed. (Springer, New York, 1998), p. 686.
2.
go back to reference J. Zang and A. Hoffmann, Topology in Magnetism, Ed. by J. Zang, V. Cros, and A. Hoffmann (Springer, Berlin, 2018), p. 416.CrossRef J. Zang and A. Hoffmann, Topology in Magnetism, Ed. by J. Zang, V. Cros, and A. Hoffmann (Springer, Berlin, 2018), p. 416.CrossRef
3.
go back to reference H. Barkhausen, “Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinunften,” Phys. Z. 20, No. 17, 401–403 (1919). H. Barkhausen, “Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinunften,” Phys. Z. 20, No. 17, 401–403 (1919).
4.
go back to reference L. D. Landau and E. M. Lifshits, On the Theory of Dispersion of the Magnetic Permeability of Ferromagnetic Bodies, L.D. Landau Collected Works, Ed. by E.M. Lifshits (Nauka, Moscow, 1969), pp. 128–143 [in Russian]. L. D. Landau and E. M. Lifshits, On the Theory of Dispersion of the Magnetic Permeability of Ferromagnetic Bodies, L.D. Landau Collected Works, Ed. by E.M. Lifshits (Nauka, Moscow, 1969), pp. 128–143 [in Russian].
5.
go back to reference A. A.Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973).CrossRef A. A.Thiele, “Steady-state motion of magnetic domains,” Phys. Rev. Lett. 30, No. 6, 230–233 (1973).CrossRef
6.
go back to reference W. Brown, Micromagnetics (Wiley, New York, 1963), p. 143. W. Brown, Micromagnetics (Wiley, New York, 1963), p. 143.
7.
go back to reference L. Néel, Influence of Voids and Inclusions on the Coercive Force, Physics of Ferromagnetic Areas, Ed. by S. V. Vonsovskii (Izdatel’stvo Inostrannoi Literatury, Moscow, 1951), pp. 215–239 [in Russian]. L. Néel, Influence of Voids and Inclusions on the Coercive Force, Physics of Ferromagnetic Areas, Ed. by S. V. Vonsovskii (Izdatel’stvo Inostrannoi Literatury, Moscow, 1951), pp. 215–239 [in Russian].
8.
go back to reference J. B. Goodenough, “A theory of domain creation and coercive force in polycrystalline ferromagnetics,” Phys. Rev. 95, No. 4, 917–932 (1954).CrossRef J. B. Goodenough, “A theory of domain creation and coercive force in polycrystalline ferromagnetics,” Phys. Rev. 95, No. 4, 917–932 (1954).CrossRef
9.
go back to reference A. Aharoni, E. H. Frei, and S. Shtrikman, “Theoretical approach to the asymmetrical magnetization curve,” J. Appl. Phys. 30, No. 12, 1956–1961 (1959).CrossRef A. Aharoni, E. H. Frei, and S. Shtrikman, “Theoretical approach to the asymmetrical magnetization curve,” J. Appl. Phys. 30, No. 12, 1956–1961 (1959).CrossRef
10.
go back to reference W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 105, No. 3, 904–913 (1957).CrossRef W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 105, No. 3, 904–913 (1957).CrossRef
11.
go back to reference H. Kronmuller, “Micromagnetism in amorphous alloys,” IEEE Trans. Magn. 15, No. 5, 1218–1225 (1979).CrossRef H. Kronmuller, “Micromagnetism in amorphous alloys,” IEEE Trans. Magn. 15, No. 5, 1218–1225 (1979).CrossRef
12.
go back to reference D. I. Paul, “General theory of the coercive force due to domain wall pinning,” J. Appl. Phys. 53, No. 3, 1649–1654 (1982).CrossRef D. I. Paul, “General theory of the coercive force due to domain wall pinning,” J. Appl. Phys. 53, No. 3, 1649–1654 (1982).CrossRef
13.
go back to reference D. I. Paul, “Soliton theory and the dynamics of a ferromagnetic domain wall,” J. Phys. C: Solid State Phys. 12, 585–593 (1979).CrossRef D. I. Paul, “Soliton theory and the dynamics of a ferromagnetic domain wall,” J. Phys. C: Solid State Phys. 12, 585–593 (1979).CrossRef
14.
go back to reference A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, No. 10, 107133 (2014).CrossRef A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, “The design and verification of MuMax3,” AIP Adv. 4, No. 10, 107133 (2014).CrossRef
15.
go back to reference OOMMF Project at NIST. https:// math.nist.gov/oommf. Cited August 15, 2020. OOMMF Project at NIST. https:// math.nist.gov/oommf. Cited August 15, 2020.
16.
go back to reference B. N. Filippov and M. N. Dubovik, “Influence of three-dimensional inhomogeneities of the magnetic parameters on the dynamics of vortex-like domain walls,” Phys. Solid State 56, No. 5, 967–974 (2014).CrossRef B. N. Filippov and M. N. Dubovik, “Influence of three-dimensional inhomogeneities of the magnetic parameters on the dynamics of vortex-like domain walls,” Phys. Solid State 56, No. 5, 967–974 (2014).CrossRef
17.
go back to reference E. G. Ekomasov, R. R. Murtazin, and V. N. Nazarov, “One-dimensional dynamics of domain walls in a three-layer ferromagnetic structure with different parameters of magnetic anisotropy and exchange,” Fiz. Met. Metalloved. 115, No. 2, 125–131 (2013). E. G. Ekomasov, R. R. Murtazin, and V. N. Nazarov, “One-dimensional dynamics of domain walls in a three-layer ferromagnetic structure with different parameters of magnetic anisotropy and exchange,” Fiz. Met. Metalloved. 115, No. 2, 125–131 (2013).
18.
go back to reference N. I. Noskova, V. V. Shulika, and A. P. Potapov, “On the nature of the hysteresis loop shift in amorphous soft magnetic alloys,” Mater. Trans. 42, No. 8, 1540–1542 (2001).CrossRef N. I. Noskova, V. V. Shulika, and A. P. Potapov, “On the nature of the hysteresis loop shift in amorphous soft magnetic alloys,” Mater. Trans. 42, No. 8, 1540–1542 (2001).CrossRef
19.
go back to reference M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain boundaries in thin films with in-plane anisotropy and inhomogeneity of saturation magnetization,” Fundamental’nye Problemy Sovremennogo Materialovedeniya 12, No. 4, 408–414 (2015). M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain boundaries in thin films with in-plane anisotropy and inhomogeneity of saturation magnetization,” Fundamental’nye Problemy Sovremennogo Materialovedeniya 12, No. 4, 408–414 (2015).
20.
go back to reference M. N. Dubovik, L. G. Korzunin, and B. N. Filippov, “Asymmetrical pinning of vortex domain walls in ferromagnetic films in areas with increased saturation magnetization,” Phys. Met. Metallogr. 116, No. 7, 656–662 (2015).CrossRef M. N. Dubovik, L. G. Korzunin, and B. N. Filippov, “Asymmetrical pinning of vortex domain walls in ferromagnetic films in areas with increased saturation magnetization,” Phys. Met. Metallogr. 116, No. 7, 656–662 (2015).CrossRef
21.
go back to reference M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain walls in magnetic films in regions with lowered saturation magnetization,” Phys. Met. Metallogr. 117, No. 4, 329–335 (2016).CrossRef M. N. Dubovik, B. N. Filippov, and L. G. Korzunin, “Asymmetric pinning of vortex domain walls in magnetic films in regions with lowered saturation magnetization,” Phys. Met. Metallogr. 117, No. 4, 329–335 (2016).CrossRef
22.
go back to reference W. Zhu, J. Liao, Z. Zhang, B. Ma, Q. Y. Jin, Y. Liu, Z. Huang, X. Hu, A. Ding, J. Wu, and Y. Xu, “Depinning of vortex domain walls from an asymmetric notch in a permalloy nanowire,” Appl. Phys. Lett. 101, No. 8 (2012). W. Zhu, J. Liao, Z. Zhang, B. Ma, Q. Y. Jin, Y. Liu, Z. Huang, X. Hu, A. Ding, J. Wu, and Y. Xu, “Depinning of vortex domain walls from an asymmetric notch in a permalloy nanowire,” Appl. Phys. Lett. 101, No. 8 (2012).
23.
go back to reference S. Moretti, M. Voto, and E. Martinez, “Dynamical depinning of chiral domain walls,” Phys. Rev. B 96, No. 5, 1–10 (2017).CrossRef S. Moretti, M. Voto, and E. Martinez, “Dynamical depinning of chiral domain walls,” Phys. Rev. B 96, No. 5, 1–10 (2017).CrossRef
24.
go back to reference R. L. Novak, P. J. Metaxas, J. P. Jamet, R. Weil, J. Ferré, A. Mougin, S. Rohart, R. L. Stamps, P. J. Zermatten, G. Gaudin, V. Baltz, and B. Rodmacq, “Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential,” J. Phys. D: Appl. Phys. 48, No. 23, 1–12 (2015).CrossRef R. L. Novak, P. J. Metaxas, J. P. Jamet, R. Weil, J. Ferré, A. Mougin, S. Rohart, R. L. Stamps, P. J. Zermatten, G. Gaudin, V. Baltz, and B. Rodmacq, “Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential,” J. Phys. D: Appl. Phys. 48, No. 23, 1–12 (2015).CrossRef
25.
go back to reference M. N. Dubovik and B. N. Filippov, “Influence of asymmetric pinning of vortex domain boundaries on the magnetization curve of films with plane anisotropy,” Fiz. Met. Metalloved. 118, No. 5, 464–468 (2017). M. N. Dubovik and B. N. Filippov, “Influence of asymmetric pinning of vortex domain boundaries on the magnetization curve of films with plane anisotropy,” Fiz. Met. Metalloved. 118, No. 5, 464–468 (2017).
26.
go back to reference I. M. Izmozherov, E. Zh. Baikenov, M. N. Dubovik, and B. N. Filippov, “The influence of loop geometry on the asymmetric pinning of domain walls in films with uniaxial anisotropy,” Phys. Met. Metallogr. 119, No. 8, 713–719 (2018).CrossRef I. M. Izmozherov, E. Zh. Baikenov, M. N. Dubovik, and B. N. Filippov, “The influence of loop geometry on the asymmetric pinning of domain walls in films with uniaxial anisotropy,” Phys. Met. Metallogr. 119, No. 8, 713–719 (2018).CrossRef
27.
go back to reference V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Static structures,” Fiz. Met. Metalloved. 114, No. 2, 120–128 (2013). V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Static structures,” Fiz. Met. Metalloved. 114, No. 2, 120–128 (2013).
28.
go back to reference V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Dynamics and structural rearrangements,” Phys. Met. Metallogr. 114, No. 2, 129–135 (2013). V. V. Zverev and B. N. Filippov, “Modeling of three-dimensional micromagnetic structures in magnetic-uniaxial films with in-plane anisotropy. Dynamics and structural rearrangements,” Phys. Met. Metallogr. 114, No. 2, 129–135 (2013).
29.
go back to reference C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic antidot nanostructures: Effect of lattice geometry,” Nanotechnology 17, No. 6, 1629–1636 (2006).CrossRef C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic antidot nanostructures: Effect of lattice geometry,” Nanotechnology 17, No. 6, 1629–1636 (2006).CrossRef
30.
go back to reference N. G. Deshpande, M. S. Seo, X. R. Jin, S. J. Lee, Y. P. Lee, J. Y. Rhee, and K. W. Kim, “Tailoring of magnetic properties of patterned cobalt antidots by simple manipulation of lattice symmetry,” Appl. Phys. Lett. 96, No. 12, 17–20 (2010).CrossRef N. G. Deshpande, M. S. Seo, X. R. Jin, S. J. Lee, Y. P. Lee, J. Y. Rhee, and K. W. Kim, “Tailoring of magnetic properties of patterned cobalt antidots by simple manipulation of lattice symmetry,” Appl. Phys. Lett. 96, No. 12, 17–20 (2010).CrossRef
31.
go back to reference C. C. Ho, T. W. Hsieh, H. H. Kung, W. T. Juan, K. H. Lin, and W. L. Lee, “Reduced saturation magnetization in cobalt antidot thin films prepared by polyethylene oxide-assisted self-assembly of polystyrene nanospheres,” Appl. Phys. Lett. 96, No. 12, 1–3 (2010).CrossRef C. C. Ho, T. W. Hsieh, H. H. Kung, W. T. Juan, K. H. Lin, and W. L. Lee, “Reduced saturation magnetization in cobalt antidot thin films prepared by polyethylene oxide-assisted self-assembly of polystyrene nanospheres,” Appl. Phys. Lett. 96, No. 12, 1–3 (2010).CrossRef
32.
go back to reference F. Fettar, L. Cagnon, and N. Rougemaille, “Three-dimensional magnetization profile and multiaxes exchange bias in Co antidot arrays,” Appl. Phys. Lett. 97, No. 19, 1–3 (2010).CrossRef F. Fettar, L. Cagnon, and N. Rougemaille, “Three-dimensional magnetization profile and multiaxes exchange bias in Co antidot arrays,” Appl. Phys. Lett. 97, No. 19, 1–3 (2010).CrossRef
33.
go back to reference C. T. Yu, H. Jiang, L. Shen, P. J. Flanders, and G. J. Mankey, “The magnetic anisotropy and domain structure of permalloy antidot arrays,” J. Appl. Phys. 87, No. 9, 6322–6324 (2000).CrossRef C. T. Yu, H. Jiang, L. Shen, P. J. Flanders, and G. J. Mankey, “The magnetic anisotropy and domain structure of permalloy antidot arrays,” J. Appl. Phys. 87, No. 9, 6322–6324 (2000).CrossRef
34.
go back to reference C. Yu, M. J. Pechan, and G. J. Mankey, “Dipolar induced, spatially localized resonance in magnetic antidot arrays,” Appl. Phys. Lett. 83, No. 19, 3948–3950 (2003).CrossRef C. Yu, M. J. Pechan, and G. J. Mankey, “Dipolar induced, spatially localized resonance in magnetic antidot arrays,” Appl. Phys. Lett. 83, No. 19, 3948–3950 (2003).CrossRef
35.
go back to reference D. Tripathy, P. Vavassori, J. M. Porro, A. O. Adeyeye, and N. Singh, “Magnetization reversal and anisotropic magnetoresistance behavior in bicomponent antidot nanostructures,” Appl. Phys. Lett. 97, No. 4, 95–98 (2010).CrossRef D. Tripathy, P. Vavassori, J. M. Porro, A. O. Adeyeye, and N. Singh, “Magnetization reversal and anisotropic magnetoresistance behavior in bicomponent antidot nanostructures,” Appl. Phys. Lett. 97, No. 4, 95–98 (2010).CrossRef
36.
go back to reference S. Tacchi, B. Botters, M. Madami, J. W. Klos, M. L. Sokolovskyy, M. Krawczyk, G. Gubbiotti, G. Carlotti, A. O. Adeyeye, S. Neusser, and D. Grundler, “Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels,” Phys. Rev. B 86, No. 1, 1–12 (2012).CrossRef S. Tacchi, B. Botters, M. Madami, J. W. Klos, M. L. Sokolovskyy, M. Krawczyk, G. Gubbiotti, G. Carlotti, A. O. Adeyeye, S. Neusser, and D. Grundler, “Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels,” Phys. Rev. B 86, No. 1, 1–12 (2012).CrossRef
37.
go back to reference J. Ding, D. Tripathy, and A. O. Adeyeye, “Effect of antidot diameter on the dynamic response of nanoscale antidot arrays,” J. Appl. Phys. 109, No. 7, 1–4 (2011).CrossRef J. Ding, D. Tripathy, and A. O. Adeyeye, “Effect of antidot diameter on the dynamic response of nanoscale antidot arrays,” J. Appl. Phys. 109, No. 7, 1–4 (2011).CrossRef
38.
go back to reference A. Toporov, R. M. Langford, and A. K. Petford-Long, “Lorentz transmission electron microscopy of focused ion beam patterned magnetic antidot arrays,” Appl. Phys. Lett. 77, No. 19, 3063–3065 (2000).CrossRef A. Toporov, R. M. Langford, and A. K. Petford-Long, “Lorentz transmission electron microscopy of focused ion beam patterned magnetic antidot arrays,” Appl. Phys. Lett. 77, No. 19, 3063–3065 (2000).CrossRef
39.
go back to reference L. Torres, L. Lopez-Diaz, and J. Iñiguez, “Micromagnetic tailoring of periodic antidot permalloy arrays for high density storage,” Appl. Phys. Lett. 73, No. 25, 3766–3768 (1998).CrossRef L. Torres, L. Lopez-Diaz, and J. Iñiguez, “Micromagnetic tailoring of periodic antidot permalloy arrays for high density storage,” Appl. Phys. Lett. 73, No. 25, 3766–3768 (1998).CrossRef
40.
go back to reference R. P. Cowburn, A. O. Adeyeye, and J. A. C. Bland, “Magnetic domain formation in lithographically defined antidot Permalloy arrays,” Appl. Phys. Lett. 70, No. 17, 2309–2311 (1997).CrossRef R. P. Cowburn, A. O. Adeyeye, and J. A. C. Bland, “Magnetic domain formation in lithographically defined antidot Permalloy arrays,” Appl. Phys. Lett. 70, No. 17, 2309–2311 (1997).CrossRef
41.
go back to reference Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, V. K. Vlasko-Vlasov, W. K. Kwok, D. J. Miller, J. M. Hiller, R. E. Cook, G. A. Willing, and G. W. Crabtree, “Nickel antidot arrays on anodic alumina substrates,” Appl. Phys. Lett. 81, No. 15, 2869–2871 (2002).CrossRef Z. L. Xiao, C. Y. Han, U. Welp, H. H. Wang, V. K. Vlasko-Vlasov, W. K. Kwok, D. J. Miller, J. M. Hiller, R. E. Cook, G. A. Willing, and G. W. Crabtree, “Nickel antidot arrays on anodic alumina substrates,” Appl. Phys. Lett. 81, No. 15, 2869–2871 (2002).CrossRef
42.
go back to reference D. Navas, M. Hernández-V́lez, M. Vázquez, W. Lee, and K. Nielsch, “Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy,” Appl. Phys. Lett. 90, No. 19, 1–4 (2007).CrossRef D. Navas, M. Hernández-V́lez, M. Vázquez, W. Lee, and K. Nielsch, “Ordered Ni nanohole arrays with engineered geometrical aspects and magnetic anisotropy,” Appl. Phys. Lett. 90, No. 19, 1–4 (2007).CrossRef
43.
go back to reference R. Mandal, S. Saha, D. Kumar, S. Barman, S. Pal, K. Das, A. K. Raychaudhuri, Y. Fukuma, Y. Otani, and A. Barman, “Optically induced tunable magnetization dynamics in nanoscale Co antidot lattices,” ACS Nano 6, No. 4, 3397–3403 (2012).CrossRef R. Mandal, S. Saha, D. Kumar, S. Barman, S. Pal, K. Das, A. K. Raychaudhuri, Y. Fukuma, Y. Otani, and A. Barman, “Optically induced tunable magnetization dynamics in nanoscale Co antidot lattices,” ACS Nano 6, No. 4, 3397–3403 (2012).CrossRef
44.
go back to reference C. Castán-Guerrero, J. Herrero-Albillos, J. Bartolomé, F. Bartolomé, L. A. Rodríguez, C. Magén, F. Kronast, P. Gawronski, O. Chubykalo-Fesenko, K. J. Merazzo, P. Vavassori, P. Strichovanec, J. Sesé, and L. M. García, “Magnetic antidot to dot crossover in Co and Py nanopatterned thin films,” Phys. Rev. B 89, No. 14, 1–10 (2014).CrossRef C. Castán-Guerrero, J. Herrero-Albillos, J. Bartolomé, F. Bartolomé, L. A. Rodríguez, C. Magén, F. Kronast, P. Gawronski, O. Chubykalo-Fesenko, K. J. Merazzo, P. Vavassori, P. Strichovanec, J. Sesé, and L. M. García, “Magnetic antidot to dot crossover in Co and Py nanopatterned thin films,” Phys. Rev. B 89, No. 14, 1–10 (2014).CrossRef
45.
go back to reference S. Michea, J. L. Palma, R. Lavin, J. Briones, J. Escrig, J. C. Denardin, and R. L. Rodríguez-Suárez, “Tailoring the magnetic properties of cobalt antidot arrays by varying the pore size and degree of disorder,” J. Phys. D: Appl. Phys. 47, No. 33, 1–8 (2014).CrossRef S. Michea, J. L. Palma, R. Lavin, J. Briones, J. Escrig, J. C. Denardin, and R. L. Rodríguez-Suárez, “Tailoring the magnetic properties of cobalt antidot arrays by varying the pore size and degree of disorder,” J. Phys. D: Appl. Phys. 47, No. 33, 1–8 (2014).CrossRef
46.
go back to reference A. Barman, “Control of magnonic spectra in cobalt nanohole arrays: The effects of density, symmetry and defects,” J. Phys. D: Appl. Phys. 43, No. 19, 1–7 (2010).CrossRef A. Barman, “Control of magnonic spectra in cobalt nanohole arrays: The effects of density, symmetry and defects,” J. Phys. D: Appl. Phys. 43, No. 19, 1–7 (2010).CrossRef
47.
go back to reference C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic and transport properties of multilayer nanoscale antidot arrays,” Appl. Phys. Lett. 88, No. 22, 1–4 (2006). C. C. Wang, A. O. Adeyeye, and N. Singh, “Magnetic and transport properties of multilayer nanoscale antidot arrays,” Appl. Phys. Lett. 88, No. 22, 1–4 (2006).
48.
go back to reference F. J. Castaño, K. Nielsch, C. A. Ross, J. W. A. Robinson, and R. Krishnan, “Anisotropy and magnetotransport in ordered magnetic antidot arrays,” Appl. Phys. Lett. 85, No. 14, 2872–2874 (2004).CrossRef F. J. Castaño, K. Nielsch, C. A. Ross, J. W. A. Robinson, and R. Krishnan, “Anisotropy and magnetotransport in ordered magnetic antidot arrays,” Appl. Phys. Lett. 85, No. 14, 2872–2874 (2004).CrossRef
49.
go back to reference A. O. Adeyeye, M. T. Win, T. A. Tan, G. S. Chong, V. Ng, and T. S. Low, “Planar Hall effect and magnetoresistance in Co/Cu multilayer films,” Sens. Actuators, A 116, No. 1, 95–102 (2004).CrossRef A. O. Adeyeye, M. T. Win, T. A. Tan, G. S. Chong, V. Ng, and T. S. Low, “Planar Hall effect and magnetoresistance in Co/Cu multilayer films,” Sens. Actuators, A 116, No. 1, 95–102 (2004).CrossRef
50.
go back to reference X. K. Hu, S. Sievers, A. Muller, V. Janke, and H. W. Schumacher, “Classification of super domains and super domain walls in permalloy antidot lattices,” Phys. Rev. B 84, No. 2, 2–7 (2011).CrossRef X. K. Hu, S. Sievers, A. Muller, V. Janke, and H. W. Schumacher, “Classification of super domains and super domain walls in permalloy antidot lattices,” Phys. Rev. B 84, No. 2, 2–7 (2011).CrossRef
51.
go back to reference X. K. Hu, S. Sievers, A. Muller, and H. W. Schumacher, “The influence of individual lattice defects on the domain structure in magnetic antidot lattices,” J. Appl. Phys. 113, No. 10, 1–6 (2013).CrossRef X. K. Hu, S. Sievers, A. Muller, and H. W. Schumacher, “The influence of individual lattice defects on the domain structure in magnetic antidot lattices,” J. Appl. Phys. 113, No. 10, 1–6 (2013).CrossRef
52.
go back to reference S. Mallick, S. S. Mishra, and S. Bedanta, “Relaxation dynamics in magnetic antidot lattice arrays of Co/Pt with perpendicular anisotropy,” Sci. Rep. 8, No. 1, 1–8 (2018).CrossRef S. Mallick, S. S. Mishra, and S. Bedanta, “Relaxation dynamics in magnetic antidot lattice arrays of Co/Pt with perpendicular anisotropy,” Sci. Rep. 8, No. 1, 1–8 (2018).CrossRef
53.
go back to reference L. J. Heyderman, F. Nolting, D. Backes, S. Czekaj, L. Lopez-Diaz, M. Klaui, U. Rudiger, C. A. F. Vaz, J. A. C. Bland, R. J. Matelon, U. G. Volkmann, and P. Fischer, “Magnetization reversal in cobalt antidot arrays,” Phys. Rev. B 73, No. 21, 1–12 (2006).CrossRef L. J. Heyderman, F. Nolting, D. Backes, S. Czekaj, L. Lopez-Diaz, M. Klaui, U. Rudiger, C. A. F. Vaz, J. A. C. Bland, R. J. Matelon, U. G. Volkmann, and P. Fischer, “Magnetization reversal in cobalt antidot arrays,” Phys. Rev. B 73, No. 21, 1–12 (2006).CrossRef
54.
go back to reference N. Tahir, M. Zelent, R. Gieniusz, M. Krawczyk, A. Maziewski, T. Wojciechowski, J. Ding, and A. O. Adeyeye, “Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices, J. Phys. D: Appl. Phys.” 50, No. 2, 025004 (2017).CrossRef N. Tahir, M. Zelent, R. Gieniusz, M. Krawczyk, A. Maziewski, T. Wojciechowski, J. Ding, and A. O. Adeyeye, “Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices, J. Phys. D: Appl. Phys.” 50, No. 2, 025004 (2017).CrossRef
55.
go back to reference Y. Liu and A. Du, “Arrangement effects of triangular defects on magnetization reversal process in a permalloy dot,” J. Met., Mater. Miner. 323, 461–464 (2011). Y. Liu and A. Du, “Arrangement effects of triangular defects on magnetization reversal process in a permalloy dot,” J. Met., Mater. Miner. 323, 461–464 (2011).
56.
go back to reference Y. H. Liu and Y. Q. Li, “A mechanism to pin skyrmions in chiral magnets,” J. Phys.: Condens. Matter. 25, No. 7, 1–8 (2013). Y. H. Liu and Y. Q. Li, “A mechanism to pin skyrmions in chiral magnets,” J. Phys.: Condens. Matter. 25, No. 7, 1–8 (2013).
57.
go back to reference U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442, No. 7104, 797–801 (2006).CrossRef U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442, No. 7104, 797–801 (2006).CrossRef
58.
go back to reference S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915–919 (2009).CrossRef S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323, No. 5916, 915–919 (2009).CrossRef
59.
go back to reference A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotechnol. 8, No. 3, 152–156 (2013).CrossRef A. Fert, V. Cros, and J. Sampaio, “Skyrmions on the track,” Nat. Nanotechnol. 8, No. 3, 152–156 (2013).CrossRef
60.
go back to reference X. Zhang, M. Ezawa, and Y. Zhou, “Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions,” Sci. Rep. 5, 1–8 (2015). X. Zhang, M. Ezawa, and Y. Zhou, “Magnetic skyrmion logic gates: Conversion, duplication and merging of skyrmions,” Sci. Rep. 5, 1–8 (2015).
61.
go back to reference M. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Met., Mater. Miner. 396, 338–344 (2015). M. Sapozhnikov, “Skyrmion lattice in a magnetic film with spatially modulated material parameters,” J. Met., Mater. Miner. 396, 338–344 (2015).
62.
go back to reference R. M. Vakhitov, A. A. Akhmetova, and R. V. Solonetskii, “Vortex-like structures at the defects of uniaxial films,” Phys. Solid State 61, No. 3, 319–325 (2019).CrossRef R. M. Vakhitov, A. A. Akhmetova, and R. V. Solonetskii, “Vortex-like structures at the defects of uniaxial films,” Phys. Solid State 61, No. 3, 319–325 (2019).CrossRef
63.
go back to reference C. Song, C. Jin, H. Xia, Y. Ma, J. Wang, J. Wang, and Q. Liu, “Interaction between defect and skyrmion in nanodisk,” http://arxiv.org/abs/2005.03385. C. Song, C. Jin, H. Xia, Y. Ma, J. Wang, J. Wang, and Q. Liu, “Interaction between defect and skyrmion in nanodisk,” http://​arxiv.​org/​abs/​2005.​03385.​
64.
go back to reference J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1–8 (2013).CrossRef J. Iwasaki, M. Mochizuki, and N. Nagaosa, “Universal current-velocity relation of skyrmion motion in chiral magnets,” Nat. Commun. 4, 1–8 (2013).CrossRef
65.
go back to reference C. Deger, I. Yavuz, and F. Yildiz, “Current-driven coherent skyrmion generation,” Sci. Rep. 9, No. 1, 1–8 (2019).CrossRef C. Deger, I. Yavuz, and F. Yildiz, “Current-driven coherent skyrmion generation,” Sci. Rep. 9, No. 1, 1–8 (2019).CrossRef
66.
go back to reference A. Michels, S. Erokhin, D. Berkov, and N. Gorn, “Micromagnetic simulation of magnetic small-angle neutron scattering from two-phase nanocomposites,” J. Met., Mater. Miner. 350, 55–68 (2014). A. Michels, S. Erokhin, D. Berkov, and N. Gorn, “Micromagnetic simulation of magnetic small-angle neutron scattering from two-phase nanocomposites,” J. Met., Mater. Miner. 350, 55–68 (2014).
67.
go back to reference S. Erokhin and D. Berkov, “Optimization of nanocomposite materials for permanent magnets: micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains,” Phys. Rev. Appl. 7, No. 1, 1–15 (2017).CrossRef S. Erokhin and D. Berkov, “Optimization of nanocomposite materials for permanent magnets: micromagnetic simulations of the effects of intergrain exchange and the shapes of hard grains,” Phys. Rev. Appl. 7, No. 1, 1–15 (2017).CrossRef
68.
go back to reference P. N. Solovev, A. V. Izotov, and B. A. Belyaev, “Micromagnetic simulation of magnetization reversal processes in thin obliquely deposited films,” J. Sib. Fed. Univ., Math. Phys. 9, No. 4, 524–527 (2016). P. N. Solovev, A. V. Izotov, and B. A. Belyaev, “Micromagnetic simulation of magnetization reversal processes in thin obliquely deposited films,” J. Sib. Fed. Univ., Math. Phys. 9, No. 4, 524–527 (2016).
69.
go back to reference M. Menarini, M. V. Lubarda, R. Chang, S. Li, S. Fu, B. Livshitz, and V. Lomakin, “Micromagnetic simulator for complex granular systems based on Voronoi tessellation,” J. Met., Mater. Miner. 482, 350–357 (2019). M. Menarini, M. V. Lubarda, R. Chang, S. Li, S. Fu, B. Livshitz, and V. Lomakin, “Micromagnetic simulator for complex granular systems based on Voronoi tessellation,” J. Met., Mater. Miner. 482, 350–357 (2019).
70.
go back to reference N. A. Balakirev and V. A. Zhikharev, “Computer simulation of growth and magnetic properties of quasi 2D magnetic cluster,” Magn. Reson. Solids 17, No. 2, 1–6 (2015). N. A. Balakirev and V. A. Zhikharev, “Computer simulation of growth and magnetic properties of quasi 2D magnetic cluster,” Magn. Reson. Solids 17, No. 2, 1–6 (2015).
Metadata
Title
Numerical Simulation of the Influence of Inhomogeneities on the Properties of Magnetization Nanostructures
Authors
L. G. Korzunin
I. M. Izmozherov
Publication date
01-03-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 3/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21030091

Other articles of this Issue 3/2021

Physics of Metals and Metallography 3/2021 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

A Study on the Formation of Symmetrical Rod Phase in Mg66Zn30Gd4 Alloy