Skip to main content
Top
Published in: Strength of Materials 1/2020

16-04-2020

Numerical Simulation of the Temperature and Stress State on the Additive Friction Stir with the Smoothed Particle Hydrodynamics Method

Author: H. G. Yang

Published in: Strength of Materials | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The additive friction stir process provides a new approach to additive manufacturing by depositing and coating of a variety of similar and dissimilar materials with imparting them exceptional mechanical properties. During this process, the filler material can be deposited layer-by-layer on the substrate effected by heat and plastic deformation due to friction between the filler rod and substrate. For understanding complex physics of this advanced process, a numerical simulation model for the first layer deposition with the smoothed particle hydrodynamics method was constructed and implemented in an LS-DYNA commercial complex. The temperature distribution, material deposition, deformation and stress state were evaluated on the basis of simulation results. The Vickers hardness distribution was also measured in the experiment to verify the stress distribution. A higher stress observed on the top layer of deposition and Vickers hardness appeared to be similar characteristics due to the relationship between stress and hardness.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference F. Calignano, D. Manfredi, E. P. Ambrosio, et al., “Overview on additive manufacturing technologies,” Proc. IEEE, 105, No. 4, 593–612 (2017).CrossRef F. Calignano, D. Manfredi, E. P. Ambrosio, et al., “Overview on additive manufacturing technologies,” Proc. IEEE, 105, No. 4, 593–612 (2017).CrossRef
2.
go back to reference S. Mellor, L. Hao, and D. Zhang, “Economics additive manufacturing?: A framework for implementation,” Int. J. Prod. Econ., 149, 194–201 (2014).CrossRef S. Mellor, L. Hao, and D. Zhang, “Economics additive manufacturing?: A framework for implementation,” Int. J. Prod. Econ., 149, 194–201 (2014).CrossRef
3.
go back to reference M. Yakout, A. Cadamuro, M. Elbestawi, and S. Veldhuis, “The selection of process parameters in additive manufacturing for aerospace alloys,” Int. J. Adv. Manuf. Technol., 92, Nos. 5–8, 2081–2098 (2017). M. Yakout, A. Cadamuro, M. Elbestawi, and S. Veldhuis, “The selection of process parameters in additive manufacturing for aerospace alloys,” Int. J. Adv. Manuf. Technol., 92, Nos. 5–8, 2081–2098 (2017).
4.
go back to reference J. Lee, J. An, and C. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl. Mater. Today, 7, 120–133 (2017).CrossRef J. Lee, J. An, and C. Chua, “Fundamentals and applications of 3D printing for novel materials,” Appl. Mater. Today, 7, 120–133 (2017).CrossRef
5.
go back to reference R. Leal, F. Barreiros, L. Alves, et al., “Additive manufacturing tooling for the automotive industry,” Int. J. Adv. Manuf. Technol., 92, 1671–1676 (2017).CrossRef R. Leal, F. Barreiros, L. Alves, et al., “Additive manufacturing tooling for the automotive industry,” Int. J. Adv. Manuf. Technol., 92, 1671–1676 (2017).CrossRef
6.
go back to reference Y. Suyuan and Z. Baolei, “Experimental study of electron beam welding of magnesium alloys,” Rare Metals, 30, No. 1, 364–369 (2011). Y. Suyuan and Z. Baolei, “Experimental study of electron beam welding of magnesium alloys,” Rare Metals, 30, No. 1, 364–369 (2011).
7.
go back to reference C. Ng, M. Savalani, M. Lau, and H. Man, “Microstructure and mechanical properties of selective laser melted magnesium,” Appl. Surf. Sci., 257, No. 17, 7447–7454 (2011).CrossRef C. Ng, M. Savalani, M. Lau, and H. Man, “Microstructure and mechanical properties of selective laser melted magnesium,” Appl. Surf. Sci., 257, No. 17, 7447–7454 (2011).CrossRef
8.
go back to reference W. Xin, “Forming characteristics of thin-walled samples by metal fused-coating additive manufacturing,” Int. J. Adv. Manuf. Technol., 96, No. 27, 2367–2372 (2018).CrossRef W. Xin, “Forming characteristics of thin-walled samples by metal fused-coating additive manufacturing,” Int. J. Adv. Manuf. Technol., 96, No. 27, 2367–2372 (2018).CrossRef
9.
go back to reference M. Gussev, N. Sridharan, M. Norfolk, et al., “Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing,” Mater. Sci. Eng. A, 684, 606–616 (2017).CrossRef M. Gussev, N. Sridharan, M. Norfolk, et al., “Effect of post weld heat treatment on the 6061 aluminum alloy produced by ultrasonic additive manufacturing,” Mater. Sci. Eng. A, 684, 606–616 (2017).CrossRef
10.
go back to reference S. Palanivel, P. Nelaturu, B. Glass, and R. Mishra, “Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy,” Mater. Design, 65, 934–952 (2015).CrossRef S. Palanivel, P. Nelaturu, B. Glass, and R. Mishra, “Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy,” Mater. Design, 65, 934–952 (2015).CrossRef
11.
go back to reference M. Yuqing, K. Liming, H. Chunping, et al, “Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing Tool rotation,” Int. J. Adv. Manuf. Technol., 83, Nos. 9–12, 1637–1647 (2016). M. Yuqing, K. Liming, H. Chunping, et al, “Formation characteristic, microstructure, and mechanical performances of aluminum-based components by friction stir additive manufacturing Tool rotation,” Int. J. Adv. Manuf. Technol., 83, Nos. 9–12, 1637–1647 (2016).
12.
go back to reference J. K. Schultz, System for Continuous Feeding of Filler Material for Friction Stir Welding, Processing and Fabrication, US Patent US20120279441A1 (2012). J. K. Schultz, System for Continuous Feeding of Filler Material for Friction Stir Welding, Processing and Fabrication, US Patent US20120279441A1 (2012).
13.
go back to reference O. Rivera, P. Allison, J. Jordon, et al., “A Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing,” Mater. Sci. Eng. A, 694, 1–9 (2017).CrossRef O. Rivera, P. Allison, J. Jordon, et al., “A Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing,” Mater. Sci. Eng. A, 694, 1–9 (2017).CrossRef
14.
go back to reference K. Kandasamy, L. E. Renaghan, J. R. Calvert, et al., “Solid-state additive manufacturing of aluminum and magnesium alloys,” in: Proc. of the Materials Science and Technology Conference and Exhibition 2013 (MS&T’13, Oct. 27–31, 2013, Montreal, Quebec, Canada), Curran Associates, Inc. (2013), pp. 59–69. K. Kandasamy, L. E. Renaghan, J. R. Calvert, et al., “Solid-state additive manufacturing of aluminum and magnesium alloys,” in: Proc. of the Materials Science and Technology Conference and Exhibition 2013 (MS&T’13, Oct. 27–31, 2013, Montreal, Quebec, Canada), Curran Associates, Inc. (2013), pp. 59–69.
15.
go back to reference K. H. Muci-Küchler, E. Saint, J. Street, et al., “Simulation of a refill friction stir spot welding process using a fully coupled thermo-mechanical FEM model,” J. Manuf. Sci. Eng., 132, No. 1, 014503 (2010). K. H. Muci-Küchler, E. Saint, J. Street, et al., “Simulation of a refill friction stir spot welding process using a fully coupled thermo-mechanical FEM model,” J. Manuf. Sci. Eng., 132, No. 1, 014503 (2010).
16.
go back to reference J. J. Monaghan, “Smoothed particle hydrodynamics,” Annu. Rev. Astron. Astrophys., 30, 543–574 (1992).CrossRef J. J. Monaghan, “Smoothed particle hydrodynamics,” Annu. Rev. Astron. Astrophys., 30, 543–574 (1992).CrossRef
17.
go back to reference W. Pan, D. Li, A. M. Tartakovsky, et al., “A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy,” Int. J. Plasticity, 48, 189–204 (2013).CrossRef W. Pan, D. Li, A. M. Tartakovsky, et al., “A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy,” Int. J. Plasticity, 48, 189–204 (2013).CrossRef
18.
go back to reference P. W. Cleary, J. Ha, M. Prakash, T. Nguyen, “3D SPH flow predictions and validation for high pressure die casting of automotive components,” Appl. Math. Model., 30, No. 11, 1406–1427 (2006).CrossRef P. W. Cleary, J. Ha, M. Prakash, T. Nguyen, “3D SPH flow predictions and validation for high pressure die casting of automotive components,” Appl. Math. Model., 30, No. 11, 1406–1427 (2006).CrossRef
19.
go back to reference Y. Xi, M. Bermingham, G. Wang, and M. Dargusch, “SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy,” Comp. Mater. Sci., 84, 188–197 (2014).CrossRef Y. Xi, M. Bermingham, G. Wang, and M. Dargusch, “SPH/FE modeling of cutting force and chip formation during thermally assisted machining of Ti6Al4V alloy,” Comp. Mater. Sci., 84, 188–197 (2014).CrossRef
20.
go back to reference D. Lv and Y. Zhang, “Numerical simulation of chipping formation process with smooth particle hydrodynamic (SPH) method for diamond drilling AIN ceramics,” Int. J. Adv. Manuf. Technol., 96, Nos. 5–8, 2257–2258 (2018). D. Lv and Y. Zhang, “Numerical simulation of chipping formation process with smooth particle hydrodynamic (SPH) method for diamond drilling AIN ceramics,” Int. J. Adv. Manuf. Technol., 96, Nos. 5–8, 2257–2258 (2018).
21.
go back to reference Z. B. Wang, R. Chen, H. Wang, et al., “An overview of smoothed particle hydrodynamics for simulating multiphase flow,” Appl. Math. Model., 40, Nos. 23–24, 9625–9655 (2016). Z. B. Wang, R. Chen, H. Wang, et al., “An overview of smoothed particle hydrodynamics for simulating multiphase flow,” Appl. Math. Model., 40, Nos. 23–24, 9625–9655 (2016).
22.
go back to reference J. Xu, “Heat transfer with explicit SPH method in LS-DYNA,” in: Proc. of the 12th Int. LS-DYNA Users Conference (June 3–5, 2012, Detroit, USA) (2012), pp. 1–12. J. Xu, “Heat transfer with explicit SPH method in LS-DYNA,” in: Proc. of the 12th Int. LS-DYNA Users Conference (June 3–5, 2012, Detroit, USA) (2012), pp. 1–12.
23.
go back to reference J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, “The determination of yield strength from hardness measurements,” Metall. Trans., 2, No. 7, 1979–1983 (1971). J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, “The determination of yield strength from hardness measurements,” Metall. Trans., 2, No. 7, 1979–1983 (1971).
Metadata
Title
Numerical Simulation of the Temperature and Stress State on the Additive Friction Stir with the Smoothed Particle Hydrodynamics Method
Author
H. G. Yang
Publication date
16-04-2020
Publisher
Springer US
Published in
Strength of Materials / Issue 1/2020
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-020-00146-1

Other articles of this Issue 1/2020

Strength of Materials 1/2020 Go to the issue

Premium Partners