Skip to main content
Top

2016 | OriginalPaper | Chapter

Numerical Simulation of Turbulence Induced Flow Noise in Automotive Exhaust Systems Using Scale-Resolving Turbulence Models

Authors : Jan Hillenbrand, Stefan Becker, Thomas Sailer, Martin Wetzel, Oliver Hausner

Published in: New Results in Numerical and Experimental Fluid Mechanics X

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As a first step for a general numerical method for exhaust noise prediction a simplified generic exhaust system model, the straight pipe, has been investigated in terms of turbulence induced flow noise. Impinged with a constant mass flow rate, the dominant acoustic source mechanism was reduced to the subsonic jet behind the orifice at a Mach number of \(\text {M}_{\text {j}}=0.3\). In order to calculate the radiated jet noise, detached eddy simulations have been carried out to receive transient data of the turbulent flow field. Afterwards these data were used for the calculation of the acoustic far-field, based on the Ffowcs Williams-Hawkings acoustic analogy. Additionally experimental investigations of the turbulent flow as well as the acoustic far-field have been carried out in order to validate the numerical results. The acoustic results offered a good prediction of the sound pressure level at high frequencies compared to experimental data. Otherwise partially high deviations were depicted in the lower frequency range. The study of the turbulent flow field showed, that the delay of the development of turbulent structures at the jet beginning, caused by the absence of initial turbulent fluctuations, is a possible reason for this overestimation. Due to these dominant low-frequency components, the overall sound pressure level also offered an overestimation, but a good prediction of the directivity of the sound pressure field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Scheit, C., Karic, B., Becker, S.: Effect of blade wrap angle on efficiency and noise of small radial fan impellers—A computational and experimental study. J. Sound Vib. 331(5), 996–1010 (2012)CrossRef Scheit, C., Karic, B., Becker, S.: Effect of blade wrap angle on efficiency and noise of small radial fan impellers—A computational and experimental study. J. Sound Vib. 331(5), 996–1010 (2012)CrossRef
2.
go back to reference Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in abitrary motion. Philos. Trans. Roy. Soc. Lond. 264(1151), 321–342 (1969)CrossRefMATH Ffowcs Williams, J.E., Hawkings, D.L.: Sound generation by turbulence and surfaces in abitrary motion. Philos. Trans. Roy. Soc. Lond. 264(1151), 321–342 (1969)CrossRefMATH
3.
go back to reference Richards, S.K., Zhang, X., Chen, X.X., Nelson, P.A.: The evaluation of non-reflecting boundary conditions for duct acoustic computation. J. Sound Vib. 270(3), 539–557 (2004)CrossRef Richards, S.K., Zhang, X., Chen, X.X., Nelson, P.A.: The evaluation of non-reflecting boundary conditions for duct acoustic computation. J. Sound Vib. 270(3), 539–557 (2004)CrossRef
4.
go back to reference Hillenbrand, J., Becker, S., Sailer, T., Kirchweger, W., Wetzel, M., Hausner, O.: Numerical simulation of jet noise of automotive exhaust systems using scale-resolving turbulence models and an acoustic analogy. In: Automotive Simulation World Congress (29–30 Oct 2013, Frankfurt am Main, Germany) Hillenbrand, J., Becker, S., Sailer, T., Kirchweger, W., Wetzel, M., Hausner, O.: Numerical simulation of jet noise of automotive exhaust systems using scale-resolving turbulence models and an acoustic analogy. In: Automotive Simulation World Congress (29–30 Oct 2013, Frankfurt am Main, Germany)
5.
go back to reference Hillenbrand, J., Becker, S., Sailer, T., Wetzel, M., Hausner, O.: Numerische Simulation turbulenzinduzierter Strömungsakustik in Fahrzeugabgasanlagen unter der Verwendung skalenauflösender Turbulenzmodelle und einer akustischen Analogie. In: ANSYS Conference and 32nd CADFEM User’ Meeting (4–6 June 2014, Nuremberg, Germany) Hillenbrand, J., Becker, S., Sailer, T., Wetzel, M., Hausner, O.: Numerische Simulation turbulenzinduzierter Strömungsakustik in Fahrzeugabgasanlagen unter der Verwendung skalenauflösender Turbulenzmodelle und einer akustischen Analogie. In: ANSYS Conference and 32nd CADFEM User’ Meeting (4–6 June 2014, Nuremberg, Germany)
6.
go back to reference Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. J. Flow Turbul. Combust. 85(1), 113–138 (2010)CrossRefMATH Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. J. Flow Turbul. Combust. 85(1), 113–138 (2010)CrossRefMATH
7.
go back to reference Strelets, M.: Detached Eddy simulation of massively separated flows. In: 39th AIAA Aerospace Sciences Meeting and Exhibit (8–11 Jan 2001, Reno, USA), AIAA Paper 2001-0879 Strelets, M.: Detached Eddy simulation of massively separated flows. In: 39th AIAA Aerospace Sciences Meeting and Exhibit (8–11 Jan 2001, Reno, USA), AIAA Paper 2001-0879
8.
go back to reference Menter, F.R.: Best Practice: Scale-Resolving Simulations in ANSYS CFD. Technical Brief, ANSYS Germany GmbH, Version 1.02 (2012) Menter, F.R.: Best Practice: Scale-Resolving Simulations in ANSYS CFD. Technical Brief, ANSYS Germany GmbH, Version 1.02 (2012)
9.
go back to reference Mendez, S., Shoeybi, M., Lele, S.K., Moin, P.: On the use of the Ffowcs Williams-Hawkings equation to predict far-field jet noise from large-eddy simulations. Int. J. Aeroacoustics 12(1/2), 1–20 (2013)CrossRef Mendez, S., Shoeybi, M., Lele, S.K., Moin, P.: On the use of the Ffowcs Williams-Hawkings equation to predict far-field jet noise from large-eddy simulations. Int. J. Aeroacoustics 12(1/2), 1–20 (2013)CrossRef
10.
go back to reference Bogey, C., Marsden, O.: Identification of the effects of the nozzle-exit boundary-layer thickness and its corresponding Reynolds number in initially highly disturbed subsonic jets. Phys. Fluids 25, 055106 (2013)CrossRef Bogey, C., Marsden, O.: Identification of the effects of the nozzle-exit boundary-layer thickness and its corresponding Reynolds number in initially highly disturbed subsonic jets. Phys. Fluids 25, 055106 (2013)CrossRef
11.
go back to reference Bogey, C., Marsden, O., Bailly, C.: Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 10\(^{5}\). J. Fluid Mech. 701, 352–385 (2012)CrossRefMATH Bogey, C., Marsden, O., Bailly, C.: Influence of initial turbulence level on the flow and sound fields of a subsonic jet at a diameter-based Reynolds number of 10\(^{5}\). J. Fluid Mech. 701, 352–385 (2012)CrossRefMATH
Metadata
Title
Numerical Simulation of Turbulence Induced Flow Noise in Automotive Exhaust Systems Using Scale-Resolving Turbulence Models
Authors
Jan Hillenbrand
Stefan Becker
Thomas Sailer
Martin Wetzel
Oliver Hausner
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-27279-5_63

Premium Partners