Skip to main content
Top
Published in: Neural Processing Letters 4/2021

24-04-2021

Numerical Solution of Fractional Order Advection Reaction Diffusion Equation with Fibonacci Neural Network

Authors: Kushal Dhar Dwivedi, Rajeev

Published in: Neural Processing Letters | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The authors have developed an efficient method with the Fibonacci neural network’s help to solve the fractional-order reaction-diffusion equation in the present article. The Fibonacci neural network consists of an input layer with one perceptron, a hidden layer with \(n\times m\) perceptions, and an output layer with one perceptron. The authors have used various degrees of the Fibonacci polynomial as an activation function to the input in the hidden layer. The authors then convert the fractional order diffusion equation with initial and boundary conditions into a non-constrained optimization problem, which is then called the cost function. Marquardt’s method is used to update the values of weights to minimize the cost function. After that, the authors used the discussed method on four examples with an exact solution and showed that our method works more accurately than previously existing methods through comparison. In the last, authors have used the discussed method to solve the unsolved diffusion equation and observe the change in solute concentration for different fractional-order at different times.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Berg J, Nyström K (2018) A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317:28–41CrossRef Berg J, Nyström K (2018) A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 317:28–41CrossRef
2.
go back to reference Berner J, Grohs P, Jentzen A (2018) Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of black-scholes partial differential equations. arXiv preprint arXiv:1809.03062 Berner J, Grohs P, Jentzen A (2018) Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of black-scholes partial differential equations. arXiv preprint arXiv:​1809.​03062
3.
go back to reference Ghandehari MAM, Ranjbar M (2013) A numerical method for solving a fractional partial differential equation through converting it into an nlp problem. Comput Math Appl 65(7):975–982MathSciNetCrossRef Ghandehari MAM, Ranjbar M (2013) A numerical method for solving a fractional partial differential equation through converting it into an nlp problem. Comput Math Appl 65(7):975–982MathSciNetCrossRef
4.
go back to reference Ghasemi S, Effati S (2019) An artificial neural network for solving distributed optimal control of the poisson’s equation. Neural Process Lett 49(1):159–175CrossRef Ghasemi S, Effati S (2019) An artificial neural network for solving distributed optimal control of the poisson’s equation. Neural Process Lett 49(1):159–175CrossRef
5.
go back to reference Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11(11):1335CrossRef Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 11(11):1335CrossRef
6.
go back to reference Mall S, Chakraverty S (2017) Single layer chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett 45(3):825–840CrossRef Mall S, Chakraverty S (2017) Single layer chebyshev neural network model for solving elliptic partial differential equations. Neural Process Lett 45(3):825–840CrossRef
7.
go back to reference Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math General 37(31):R161MathSciNetCrossRef Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math General 37(31):R161MathSciNetCrossRef
8.
go back to reference Momani S, Yıldırım A (2010) Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by he’s homotopy perturbation method. Int J Comput Math 87(5):1057–1065MathSciNetCrossRef Momani S, Yıldırım A (2010) Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by he’s homotopy perturbation method. Int J Comput Math 87(5):1057–1065MathSciNetCrossRef
9.
go back to reference Pagnini G (2011) Nonlinear time-fractional differential equations in combustion science. Fract Calculus Appl Anal 14(1):80–93MathSciNetCrossRef Pagnini G (2011) Nonlinear time-fractional differential equations in combustion science. Fract Calculus Appl Anal 14(1):80–93MathSciNetCrossRef
10.
go back to reference Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, New YorkMATH Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, New YorkMATH
11.
go back to reference Raissi M (2018) Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations. arXiv preprint arXiv:1804.07010 Raissi M (2018) Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations. arXiv preprint arXiv:​1804.​07010
12.
go back to reference Ravindran A, Reklaitis GV, Ragsdell KM (2006) Engineering optimization: methods and applications. Wiley, LondonCrossRef Ravindran A, Reklaitis GV, Ragsdell KM (2006) Engineering optimization: methods and applications. Wiley, LondonCrossRef
13.
go back to reference Rudd K, Ferrari S (2015) A constrained integration (cint) approach to solving partial differential equations using artificial neural networks. Neurocomputing 155:277–285CrossRef Rudd K, Ferrari S (2015) A constrained integration (cint) approach to solving partial differential equations using artificial neural networks. Neurocomputing 155:277–285CrossRef
14.
go back to reference Saadatmandi A, Dehghan M (2011) A tau approach for solution of the space fractional diffusion equation. Comput Math Appl 62(3):1135–1142MathSciNetCrossRef Saadatmandi A, Dehghan M (2011) A tau approach for solution of the space fractional diffusion equation. Comput Math Appl 62(3):1135–1142MathSciNetCrossRef
15.
go back to reference Scalas E (2006) The application of continuous-time random walks in finance and economics. Phys A Stat Mech Appl 362(2):225–239CrossRef Scalas E (2006) The application of continuous-time random walks in finance and economics. Phys A Stat Mech Appl 362(2):225–239CrossRef
16.
go back to reference Sun H, Hou M, Yang Y, Zhang T, Weng F, Han F (2019) Solving partial differential equation based on bernstein neural network and extreme learning machine algorithm. Neural Process Lett 50(2):1153–1172CrossRef Sun H, Hou M, Yang Y, Zhang T, Weng F, Han F (2019) Solving partial differential equation based on bernstein neural network and extreme learning machine algorithm. Neural Process Lett 50(2):1153–1172CrossRef
17.
go back to reference Sweilam N, Nagy A, El-Sayed AA (2015) Second kind shifted chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solit Fract 73:141–147MathSciNetCrossRef Sweilam N, Nagy A, El-Sayed AA (2015) Second kind shifted chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solit Fract 73:141–147MathSciNetCrossRef
18.
go back to reference Sweilam N, Nagy A, El-Sayed AA (2016) On the numerical solution of space fractional order diffusion equation via shifted chebyshev polynomials of the third kind. J King Saud Univ Sci 28(1):41–47CrossRef Sweilam N, Nagy A, El-Sayed AA (2016) On the numerical solution of space fractional order diffusion equation via shifted chebyshev polynomials of the third kind. J King Saud Univ Sci 28(1):41–47CrossRef
19.
go back to reference Tadjeran C, Meerschaert MM, Scheffler HP (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213(1):205–213MathSciNetCrossRef Tadjeran C, Meerschaert MM, Scheffler HP (2006) A second-order accurate numerical approximation for the fractional diffusion equation. J Comput Phys 213(1):205–213MathSciNetCrossRef
20.
go back to reference Tawfiq LNM, Salih OM (2019) Design neural network based upon decomposition approach for solving reaction diffusion equation. In: Journal of Physics: Conference Series, vol. 1234, p. 012104. IOP Publishing Tawfiq LNM, Salih OM (2019) Design neural network based upon decomposition approach for solving reaction diffusion equation. In: Journal of Physics: Conference Series, vol. 1234, p. 012104. IOP Publishing
21.
go back to reference Uddin M, Haq S (2011) Rbfs approximation method for time fractional partial differential equations. Commun Nonlinear Sci Numer Simul 16(11):4208–4214MathSciNetCrossRef Uddin M, Haq S (2011) Rbfs approximation method for time fractional partial differential equations. Commun Nonlinear Sci Numer Simul 16(11):4208–4214MathSciNetCrossRef
22.
go back to reference Vinagre B, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calcul Appl Anal 3(3):231–248MathSciNetMATH Vinagre B, Podlubny I, Hernandez A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calcul Appl Anal 3(3):231–248MathSciNetMATH
23.
go back to reference Yang Y, Hou M, Sun H, Zhang T, Weng F, Luo J (2020) Neural network algorithm based on legendre improved extreme learning machine for solving elliptic partial differential equations. Soft Comput 24(2):1083–1096CrossRef Yang Y, Hou M, Sun H, Zhang T, Weng F, Luo J (2020) Neural network algorithm based on legendre improved extreme learning machine for solving elliptic partial differential equations. Soft Comput 24(2):1083–1096CrossRef
Metadata
Title
Numerical Solution of Fractional Order Advection Reaction Diffusion Equation with Fibonacci Neural Network
Authors
Kushal Dhar Dwivedi
Rajeev
Publication date
24-04-2021
Publisher
Springer US
Published in
Neural Processing Letters / Issue 4/2021
Print ISSN: 1370-4621
Electronic ISSN: 1573-773X
DOI
https://doi.org/10.1007/s11063-021-10513-x

Other articles of this Issue 4/2021

Neural Processing Letters 4/2021 Go to the issue