Skip to main content
Top

2020 | OriginalPaper | Chapter

Numerical Solution of Fuzzy Stochastic Volterra-Fredholm Integral Equation with Imprecisely Defined Parameters

Author : Sukanta Nayak

Published in: Recent Trends in Wave Mechanics and Vibrations

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Uncertainties play a major role in stochastic mechanics problems. To study the trajectory involved in stochastic mechanics problems generally, probability distributions are considered. Accordingly, the stochastic mechanics problems govern by stochastic differential equations followed by Markov process. However, the observation still lacks some sort of uncertainties, which are important but ignored. These imprecise uncertainties involved in the various factors affecting the constants, coefficients, initial, and boundary conditions. Hence, there may be a possibility to model a more reliable strategy that will quantify the uncertainty with better confidence. In this context, a computational method for solving fuzzy stochastic Volterra-Fredholm integral equation, which is based on the Block Pulse Functions (BPFs) using fuzzy stochastic operational matrix, is presented. The developed model is used to investigate a test problem of fuzzy stochastic Volterra integral equation and the results are compared in special cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput Appl 28:1591–1610CrossRef Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput Appl 28:1591–1610CrossRef
2.
go back to reference Arqub OA, Al-Smadi M, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20:3283–3302CrossRef Arqub OA, Al-Smadi M, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20:3283–3302CrossRef
3.
go back to reference Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21:7191–7206CrossRef Arqub OA, Al-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21:7191–7206CrossRef
4.
go back to reference Babolian E, Maleknejad K, Mordad M, Rahimi B (2011) A numerical method to solve Fredholm-Volterra integral equations in two dimensional spaces using block pulse functions and operational matrix. J Comput Appl Math 235(14):3965–3971MathSciNetCrossRef Babolian E, Maleknejad K, Mordad M, Rahimi B (2011) A numerical method to solve Fredholm-Volterra integral equations in two dimensional spaces using block pulse functions and operational matrix. J Comput Appl Math 235(14):3965–3971MathSciNetCrossRef
5.
6.
go back to reference Chakraverty S, Nayak S (2013) Fuzzy finite element method in diffusion problems. In: Mathematics of Uncertainty Modelling in the Analysis of Engineering and Science Problems. IGI global, pp 309–328 Chakraverty S, Nayak S (2013) Fuzzy finite element method in diffusion problems. In: Mathematics of Uncertainty Modelling in the Analysis of Engineering and Science Problems. IGI global, pp 309–328
7.
go back to reference Cortes JC, Jodar L, Villafuerte L (2007) Numerical solution of random differential equations: a mean square approach. Math Comput Model 45:757–765MathSciNetCrossRef Cortes JC, Jodar L, Villafuerte L (2007) Numerical solution of random differential equations: a mean square approach. Math Comput Model 45:757–765MathSciNetCrossRef
8.
go back to reference Etheridge A (2002) A course in financial calculus. Cambridge University Press Etheridge A (2002) A course in financial calculus. Cambridge University Press
9.
go back to reference Jankovic S, Ilic D (2010) One linear analytic approximation for stochastic integro-differential eauations. Acta Mathematica Scientia 30(4):1073–1085MathSciNetCrossRef Jankovic S, Ilic D (2010) One linear analytic approximation for stochastic integro-differential eauations. Acta Mathematica Scientia 30(4):1073–1085MathSciNetCrossRef
10.
go back to reference Jiang ZH, Schaufelberger W (1992) Block pulse functions and their applications in control systems. Springer Jiang ZH, Schaufelberger W (1992) Block pulse functions and their applications in control systems. Springer
11.
go back to reference Khodabin M, Maleknejad K, Rostami M, Nouri M (2011) Numerical solution of stochastic differential equations by second order Runge-Kutta methods. Math Comput Model 53:1910–1920MathSciNetCrossRef Khodabin M, Maleknejad K, Rostami M, Nouri M (2011) Numerical solution of stochastic differential equations by second order Runge-Kutta methods. Math Comput Model 53:1910–1920MathSciNetCrossRef
12.
go back to reference Kloeden PE, Platen E (1999) Numerical solution of stochastic differential equations. In: Applications of mathematics. Springer, Berlin Kloeden PE, Platen E (1999) Numerical solution of stochastic differential equations. In: Applications of mathematics. Springer, Berlin
13.
go back to reference Knight FH (2006) Risk, uncertainty and profit. Cosimo Classics, New York Knight FH (2006) Risk, uncertainty and profit. Cosimo Classics, New York
14.
go back to reference Maleknejad K, Mahmoudi Y (2004) Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block pulse functions. Appl Math Comput 149:799–806MathSciNetMATH Maleknejad K, Mahmoudi Y (2004) Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block pulse functions. Appl Math Comput 149:799–806MathSciNetMATH
15.
go back to reference Maleknejad K, Shahrezaee M, Khatami H (2005) Numerical solution of integral equations system of the second kind by block pulse functions. Appl Math Comput 166:15–24MathSciNetMATH Maleknejad K, Shahrezaee M, Khatami H (2005) Numerical solution of integral equations system of the second kind by block pulse functions. Appl Math Comput 166:15–24MathSciNetMATH
16.
go back to reference Malinowski MT, Michta M (2011) Stochastic fuzzy differential equations with an application. Kybernetika 47(1):123–143MathSciNetMATH Malinowski MT, Michta M (2011) Stochastic fuzzy differential equations with an application. Kybernetika 47(1):123–143MathSciNetMATH
17.
go back to reference Murge MG, Pachpatte BG (1990) Succesive approximations for solutions of second order stochastic integrodifferential equations of Ito type. Indian J Pure Appl Math 21(3):260–274MathSciNetMATH Murge MG, Pachpatte BG (1990) Succesive approximations for solutions of second order stochastic integrodifferential equations of Ito type. Indian J Pure Appl Math 21(3):260–274MathSciNetMATH
18.
go back to reference Nayak S, Chakraverty S (2016) Numerical solution of stochastic point kinetic neutron diffusion equation with fuzzy parameters. Nucl Technol 193(3):444–456CrossRef Nayak S, Chakraverty S (2016) Numerical solution of stochastic point kinetic neutron diffusion equation with fuzzy parameters. Nucl Technol 193(3):444–456CrossRef
19.
go back to reference Nayak S, Chakraverty S (2016) Numerical solution of fuzzy stochastic differential equation. J Intell Fuzzy Syst 31:555–563CrossRef Nayak S, Chakraverty S (2016) Numerical solution of fuzzy stochastic differential equation. J Intell Fuzzy Syst 31:555–563CrossRef
21.
go back to reference Oksendal B (2003) Stochastic differential equations: an introduction with applications. Springer, HeidelbergCrossRef Oksendal B (2003) Stochastic differential equations: an introduction with applications. Springer, HeidelbergCrossRef
22.
go back to reference Prasada Rao G (1983) Piecewise constant orthogonal functions and their application to systems and control. Springer, Berlin Prasada Rao G (1983) Piecewise constant orthogonal functions and their application to systems and control. Springer, Berlin
23.
go back to reference Tudor C, Tudor M (1995) Approximation schemes for Ito-Volterra stochastic equations. Boletin Sociedad Matemática Mexicana 3(1):73–85MathSciNetMATH Tudor C, Tudor M (1995) Approximation schemes for Ito-Volterra stochastic equations. Boletin Sociedad Matemática Mexicana 3(1):73–85MathSciNetMATH
24.
go back to reference Yong J (2006) Backward stochastic Volterra integral equations and some related problems. Stoch Process Appl 116:779–795MathSciNetCrossRef Yong J (2006) Backward stochastic Volterra integral equations and some related problems. Stoch Process Appl 116:779–795MathSciNetCrossRef
25.
go back to reference Zhang X (2008) Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J Diff Equat 244:2226–2250MathSciNetCrossRef Zhang X (2008) Euler schemes and large deviations for stochastic Volterra equations with singular kernels. J Diff Equat 244:2226–2250MathSciNetCrossRef
Metadata
Title
Numerical Solution of Fuzzy Stochastic Volterra-Fredholm Integral Equation with Imprecisely Defined Parameters
Author
Sukanta Nayak
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-0287-3_9

Premium Partners