Skip to main content
Top
Published in: International Journal of Material Forming 5/2021

22-02-2021 | Original Research

Numerical study of chip formation and cutting force in high-speed machining of Ti-6Al-4V bases on finite element modeling with ductile fracture criterion

Author: Mehmet Aydın

Published in: International Journal of Material Forming | Issue 5/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper suggests a novel numerical model to accurately simulate the chip formation for a wide range of high cutting speeds. It consists of finite element (FE) modeling of orthogonal machining of titanium alloy (Ti-6Al-4V) in which the Johnson–Cook (JC) material law which can reflect the strain rate hardening and thermal softening influences, and the JC damage law coupled with the displacement-based ductile failure criterion are implemented during the chip formation. Orthogonal machining simulations are performed in a conventional high cutting speed range of 170 to 250 m/min and at the extreme high cutting speeds ranging from 1200 to 4800 m/min, and saw-tooth chips are occurred. The development of chip serration and cutting force are analyzed. It is found that saw-tooth chip formation in high-speed machining of Ti-6Al-4V is the result of ductile fracture. When the cutting speed is increased from conventional to extreme high speeds, the chip morphology changes with varying the fracture behavior. The numerical model is also verified by comparing predicted results with available experimental data in the literature. The results indicate that chip morphology and cutting force can be accurately acquired using the ductile failure criterion in high-speed machining of Ti-6Al-4V.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Molinari A, Musquar C, Sutter G (2002) Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling. Int J Plast 18(4):443–459CrossRef Molinari A, Musquar C, Sutter G (2002) Adiabatic shear banding in high speed machining of Ti-6Al-4V: experiments and modeling. Int J Plast 18(4):443–459CrossRef
2.
go back to reference Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti–6%Al–4%V. J Mater Process Technol 166(2):188–192CrossRef Che-Haron CH, Jawaid A (2005) The effect of machining on surface integrity of titanium alloy Ti–6%Al–4%V. J Mater Process Technol 166(2):188–192CrossRef
3.
go back to reference Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical Sim-ulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48(3-4):275–288CrossRef Calamaz M, Coupard D, Girot F (2008) A new material model for 2D numerical Sim-ulation of serrated chip formation when machining titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 48(3-4):275–288CrossRef
4.
go back to reference Gao C, Zhang L (2013) Effect of cutting conditions on the serrated chip formation in high-speed cutting. Mach Sci Technol 17(1):26–40CrossRef Gao C, Zhang L (2013) Effect of cutting conditions on the serrated chip formation in high-speed cutting. Mach Sci Technol 17(1):26–40CrossRef
5.
go back to reference Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rate, and temperatures. In: Proceedings of the international symposium on ballistics, The Hague, The Netherlands, pp. 1–7 Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rate, and temperatures. In: Proceedings of the international symposium on ballistics, The Hague, The Netherlands, pp. 1–7
6.
go back to reference Vaziri MR, Salimi M, Mashayekhi M (2011) Evaluation of chip formation simulation models for material separation in the presence of damage models. Simul Model Pract Th 19(2):718–733CrossRef Vaziri MR, Salimi M, Mashayekhi M (2011) Evaluation of chip formation simulation models for material separation in the presence of damage models. Simul Model Pract Th 19(2):718–733CrossRef
7.
go back to reference Chen G, Ren CZ, Yang XY, Jin XM, Guo T (2011) Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model. Int J Adv Manuf Technol 56(9-12):1027–1038CrossRef Chen G, Ren CZ, Yang XY, Jin XM, Guo T (2011) Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model. Int J Adv Manuf Technol 56(9-12):1027–1038CrossRef
8.
go back to reference Ali MH, Ansari MNM, Khidhir BA, Mohamed B, Oshkour AA (2014) Simulation machining of titanium alloy (Ti-6Al-4V) based on the finite element modeling. J Braz Soc Mech Sci Eng 36(2):315–324CrossRef Ali MH, Ansari MNM, Khidhir BA, Mohamed B, Oshkour AA (2014) Simulation machining of titanium alloy (Ti-6Al-4V) based on the finite element modeling. J Braz Soc Mech Sci Eng 36(2):315–324CrossRef
9.
go back to reference Aydin M (2017) Prediction of cutting speed interval of diamond-coated tools with residual stress. Mater Manuf Process 32(2):145–150CrossRef Aydin M (2017) Prediction of cutting speed interval of diamond-coated tools with residual stress. Mater Manuf Process 32(2):145–150CrossRef
10.
go back to reference Aydın M, Köklü U (2017) Identification and modeling of cutting forces in ball-end milling based on two different finite element models with arbitrary Lagrangian Eulerian technique. Int J Adv Manuf Technol 92(1-4):1465–1480CrossRef Aydın M, Köklü U (2017) Identification and modeling of cutting forces in ball-end milling based on two different finite element models with arbitrary Lagrangian Eulerian technique. Int J Adv Manuf Technol 92(1-4):1465–1480CrossRef
11.
go back to reference Jain A, Khanna N, Bajpai V (2018) FE simulation of machining of Ti-54M titanium alloy for industry relevant outcomes. Measurement 129:268–276CrossRef Jain A, Khanna N, Bajpai V (2018) FE simulation of machining of Ti-54M titanium alloy for industry relevant outcomes. Measurement 129:268–276CrossRef
12.
go back to reference Calamaz M, Coupard D, Girot F (2010) Numerical simulation of titanium alloy dry machining with a strain softening constitutive law. Mach Sci Technol 14(2):244–257CrossRef Calamaz M, Coupard D, Girot F (2010) Numerical simulation of titanium alloy dry machining with a strain softening constitutive law. Mach Sci Technol 14(2):244–257CrossRef
13.
go back to reference Calamaz M, Coupard D, Nouari M, Girot F (2011) Numerical analysis of chipformation and shear localisation processes in machining the Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 52(9-12):887–895CrossRef Calamaz M, Coupard D, Nouari M, Girot F (2011) Numerical analysis of chipformation and shear localisation processes in machining the Ti-6Al-4V titanium alloy. Int J Adv Manuf Technol 52(9-12):887–895CrossRef
14.
go back to reference Sima M, Özel T (2010) Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 50(11):943–960CrossRef Sima M, Özel T (2010) Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V. Int J Mach Tools Manuf 50(11):943–960CrossRef
15.
go back to reference Ning J, Liang SY (2018) Model-driven determination of Johnson-Cook material constants using temperature and force measurements. Int J Adv Manuf Technol 97(1-4):1053–1060CrossRef Ning J, Liang SY (2018) Model-driven determination of Johnson-Cook material constants using temperature and force measurements. Int J Adv Manuf Technol 97(1-4):1053–1060CrossRef
16.
go back to reference Ning J, Nguyen V, Huang Y, Hartwig KT, Liang SY (2018) Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int J Adv Manuf Technol 99(5-8):1131–1140CrossRef Ning J, Nguyen V, Huang Y, Hartwig KT, Liang SY (2018) Inverse determination of Johnson–Cook model constants of ultra-fine-grained titanium based on chip formation model and iterative gradient search. Int J Adv Manuf Technol 99(5-8):1131–1140CrossRef
17.
go back to reference Umbrello D (2008) Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J Mater Process Technol 196(1-3):79–87CrossRef Umbrello D (2008) Finite element simulation of conventional and high speed machining of Ti6Al4V alloy. J Mater Process Technol 196(1-3):79–87CrossRef
18.
go back to reference Subbiah S, Melkote SN (2008) Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3. Mater Sci Eng A 474(1-2):283–300CrossRef Subbiah S, Melkote SN (2008) Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3. Mater Sci Eng A 474(1-2):283–300CrossRef
19.
go back to reference Owen DRJ, Vaz JM (1999) Computational techniques applied to high-speed machining under adiabatic strain localization conditions. Comput Methods Appl Mech Eng 171:445–461CrossRef Owen DRJ, Vaz JM (1999) Computational techniques applied to high-speed machining under adiabatic strain localization conditions. Comput Methods Appl Mech Eng 171:445–461CrossRef
20.
go back to reference Wang B, Liu Z (2014) Investigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4V. Int J Adv Manuf Technol 75(5-8):1065–1076CrossRef Wang B, Liu Z (2014) Investigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4V. Int J Adv Manuf Technol 75(5-8):1065–1076CrossRef
21.
go back to reference Ambati R, Yuan H (2011) FEM mesh-dependence in cutting process simulations. Int J Adv Manuf Technol 53(1-4):313–323CrossRef Ambati R, Yuan H (2011) FEM mesh-dependence in cutting process simulations. Int J Adv Manuf Technol 53(1-4):313–323CrossRef
22.
go back to reference Mabrouki T, Girardin F, Asad M, Rigal JF (2008) Numerical and experimental study of dry cutting for an aeronautic aluminium alloy. Int J Mach Tools Manuf 48(11):1187–1197CrossRef Mabrouki T, Girardin F, Asad M, Rigal JF (2008) Numerical and experimental study of dry cutting for an aeronautic aluminium alloy. Int J Mach Tools Manuf 48(11):1187–1197CrossRef
23.
go back to reference Zhang YC, Mabrouki T, Nelias D, Gong YD (2011) Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem Anal Des 47(7):850–863CrossRef Zhang YC, Mabrouki T, Nelias D, Gong YD (2011) Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach. Finite Elem Anal Des 47(7):850–863CrossRef
24.
go back to reference Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150(1-2):124–133CrossRef Hua J, Shivpuri R (2004) Prediction of chip morphology and segmentation during the machining of titanium alloys. J Mater Process Technol 150(1-2):124–133CrossRef
25.
go back to reference Sutter G, List G (2013) Very high speed cutting of Ti-6Al-4V titanium alloy-change in morphology and mechanism of chip formation. Int J Mach Tools Manuf 66:37–43CrossRef Sutter G, List G (2013) Very high speed cutting of Ti-6Al-4V titanium alloy-change in morphology and mechanism of chip formation. Int J Mach Tools Manuf 66:37–43CrossRef
26.
go back to reference Ducobu F, Rivière-Lorphèvre E, Filippi E (2015) Experimental contribution to the study of the Ti6Al4V chip formation in orthogonal cutting on a milling machine. Int J Mater Form 8(3):455–468CrossRef Ducobu F, Rivière-Lorphèvre E, Filippi E (2015) Experimental contribution to the study of the Ti6Al4V chip formation in orthogonal cutting on a milling machine. Int J Mater Form 8(3):455–468CrossRef
27.
go back to reference Singh BK, Roy H, Mondal B, Roy SS, Mandal N (2019) Measurement of chip morphology and multi criteria optimization of turning parameters for machining of AISI 4340 steel using Y-ZTA cutting insert. Measurement 142:181–194CrossRef Singh BK, Roy H, Mondal B, Roy SS, Mandal N (2019) Measurement of chip morphology and multi criteria optimization of turning parameters for machining of AISI 4340 steel using Y-ZTA cutting insert. Measurement 142:181–194CrossRef
28.
go back to reference Wang B, Liu Z (2016) Evaluation on fracture locus of serrated chip generation with stress triaxiality in high speed machining of Ti6Al4V. Mater Des 98:68–78CrossRef Wang B, Liu Z (2016) Evaluation on fracture locus of serrated chip generation with stress triaxiality in high speed machining of Ti6Al4V. Mater Des 98:68–78CrossRef
29.
go back to reference Jomaa W, Mechri O, Lévesque J, Songmene V, Bocher P, Gakwaya A (2017) Finite element simulation and analysis of serrated chip formationduring high–speed machining of AA7075–T651 alloy. J Manuf Process 26:446–458CrossRef Jomaa W, Mechri O, Lévesque J, Songmene V, Bocher P, Gakwaya A (2017) Finite element simulation and analysis of serrated chip formationduring high–speed machining of AA7075–T651 alloy. J Manuf Process 26:446–458CrossRef
30.
go back to reference Wan L, Wang D (2015) Numerical analysis of the formation of the dead metal zone with different tools in orthogonal cutting. Simul Model Pract Th 56:1–15CrossRef Wan L, Wang D (2015) Numerical analysis of the formation of the dead metal zone with different tools in orthogonal cutting. Simul Model Pract Th 56:1–15CrossRef
31.
go back to reference Shuang F, Chen X, Ma W (2018) Numerical analysis of chip formation mechanisms in orthogonal cutting of Ti6Al4V alloy based on a CEL model. Int J Mater Form 11(2):185–198CrossRef Shuang F, Chen X, Ma W (2018) Numerical analysis of chip formation mechanisms in orthogonal cutting of Ti6Al4V alloy based on a CEL model. Int J Mater Form 11(2):185–198CrossRef
32.
go back to reference Zhao W, Yang Q, Khan AM, He N, Zhang A (2019) An inverse-identification-based finite element simulation of orthogonal cutting tungsten carbide. J Braz Soc Mech Sci Eng 41(2):85CrossRef Zhao W, Yang Q, Khan AM, He N, Zhang A (2019) An inverse-identification-based finite element simulation of orthogonal cutting tungsten carbide. J Braz Soc Mech Sci Eng 41(2):85CrossRef
33.
go back to reference Aydın M, Köklü U (2020) Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy. Simul Model Pract Th 100:102039CrossRef Aydın M, Köklü U (2020) Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy. Simul Model Pract Th 100:102039CrossRef
34.
go back to reference Johnson GR, Holmquist TJ (1989) Test data and computational strengthen and fracture model constants for 23 materials subjected to large strain, high-strain rates, and high temperatures, LA-11463-MS, Los Alamos National laboratory Johnson GR, Holmquist TJ (1989) Test data and computational strengthen and fracture model constants for 23 materials subjected to large strain, high-strain rates, and high temperatures, LA-11463-MS, Los Alamos National laboratory
35.
go back to reference Mabrouki T, Rigal JF (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176(1-3):214–221CrossRef Mabrouki T, Rigal JF (2006) A contribution to a qualitative understanding of thermo-mechanical effects during chip formation in hard turning. J Mater Process Technol 176(1-3):214–221CrossRef
36.
go back to reference Johnson GR (1981) Dynamic analysis of a torsion test specimen including heat conduction and plastic flow. J Eng Mater Technol 103(3):201–206CrossRef Johnson GR (1981) Dynamic analysis of a torsion test specimen including heat conduction and plastic flow. J Eng Mater Technol 103(3):201–206CrossRef
37.
go back to reference Zorev NN (1963) Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. In: International Research in Production Engineering ASME, New York, pp. 42–49 Zorev NN (1963) Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting. In: International Research in Production Engineering ASME, New York, pp. 42–49
38.
go back to reference Arrazola PJ, Villar A, Ugarte D, Marya S (2007) Serrated chip prediction in finite element modeling of the chip formation process. Mach Sci Technol 11:367–390 Arrazola PJ, Villar A, Ugarte D, Marya S (2007) Serrated chip prediction in finite element modeling of the chip formation process. Mach Sci Technol 11:367–390
39.
go back to reference Thepsonthi T, Özel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. J Mater Process Technol 221:128–145 Thepsonthi T, Özel T (2015) 3-D finite element process simulation of micro-end milling Ti-6Al-4V titanium alloy: experimental validations on chip flow and tool wear. J Mater Process Technol 221:128–145
40.
go back to reference Vyas A, Shaw MC (1999) Mechanics of saw–tooth chip formation in metal cutting. J Manuf Sci Eng 121(2):163–172CrossRef Vyas A, Shaw MC (1999) Mechanics of saw–tooth chip formation in metal cutting. J Manuf Sci Eng 121(2):163–172CrossRef
41.
go back to reference Gente A, Hoffmeister HW (2001) Chip formation in machining Ti6Al4V at extremely cutting speed. CIRP Ann Manuf Technol 50(1):49–52CrossRef Gente A, Hoffmeister HW (2001) Chip formation in machining Ti6Al4V at extremely cutting speed. CIRP Ann Manuf Technol 50(1):49–52CrossRef
42.
go back to reference Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80(5-6):495–513CrossRef Bäker M, Rösler J, Siemers C (2002) A finite element model of high speed metal cutting with adiabatic shearing. Comput Struct 80(5-6):495–513CrossRef
Metadata
Title
Numerical study of chip formation and cutting force in high-speed machining of Ti-6Al-4V bases on finite element modeling with ductile fracture criterion
Author
Mehmet Aydın
Publication date
22-02-2021
Publisher
Springer Paris
Published in
International Journal of Material Forming / Issue 5/2021
Print ISSN: 1960-6206
Electronic ISSN: 1960-6214
DOI
https://doi.org/10.1007/s12289-021-01617-9

Other articles of this Issue 5/2021

International Journal of Material Forming 5/2021 Go to the issue

Premium Partners