Skip to main content
Top

2020 | OriginalPaper | Chapter

Numerical Study of Hydrogen-Fueled Scramjet Performance with Passive Techniques

Authors : Obula Reddy Kummitha, K. M. Pandey, Rajat Gupta

Published in: Advances in Applied Mechanical Engineering

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Mixing and combustion efficiencies are two important parameters to visualize the performance of scramjet. The rate of combustion strongly depends on the rate of mixing of fuel and air; hence, the mixing efficiency of fuel and supersonic airstream is the major parameter to optimize the performance of scramjet combustor. In this research paper, the numerical investigation has been carried out to enhance the mixing efficiency of fuel and supersonic air by using passive techniques. The passive techniques are implemented to DLR scramjet by creating the wall attached fuel injectors at various locations and developed different computational geometries. Computational fluid dynamics tool ANSYS Fluent 15.0 has been used to solve the fluid flow governing equations and reaction mechanism of fuel and air along with finite rate/eddy dissipation reaction model. Shear stress transport k-ω turbulence model is used for turbulence modeling. Validation of results has been performed with the DLR experimental results available in the open literature and identified a good matching of numerical and experimental results. From the analysis and comparison of numerical results for different passive techniques, it has been noticed that more recirculation regions, oblique and expansion shock waves are developed with the wall attached fuel injectors along with strut injector. These are very much helpful to penetrate into fuel stream and increasing the fuel carrying capacity, which can increase the mixing of fuel and supersonic air.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Raul R, Gilreath H, Sullins G (1992) Numerical and experimental investigation of mixing enhancement in Scramjets, AIAA-92-5063. In: AlAA fourth international aerospace planes conference, Orlando, 1–4 Dec 1992 Raul R, Gilreath H, Sullins G (1992) Numerical and experimental investigation of mixing enhancement in Scramjets, AIAA-92-5063. In: AlAA fourth international aerospace planes conference, Orlando, 1–4 Dec 1992
2.
go back to reference Wang Hongbo, Sun Mingbo, Yang Yixin, Qin Ning (2015) A passive scalar-based method for numerical combustion. Int J Hydrogen Energy 40:10658–10661CrossRef Wang Hongbo, Sun Mingbo, Yang Yixin, Qin Ning (2015) A passive scalar-based method for numerical combustion. Int J Hydrogen Energy 40:10658–10661CrossRef
3.
go back to reference Sadiki A, Maltsev A, Wegner B, Flemming F, Kempf A, Janicka J (2006) Unsteady methods (URANS and LES) for simulation of combustion systems. Int J Therm Sci 45:760–773CrossRef Sadiki A, Maltsev A, Wegner B, Flemming F, Kempf A, Janicka J (2006) Unsteady methods (URANS and LES) for simulation of combustion systems. Int J Therm Sci 45:760–773CrossRef
5.
go back to reference Gicquel LYM, Staffelbach G, Poinsot T (2012) Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog Energy Combust 38:782–817CrossRef Gicquel LYM, Staffelbach G, Poinsot T (2012) Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog Energy Combust 38:782–817CrossRef
6.
go back to reference Li J, Song W, Han X, Fu Q, Junniu, Xue W (2015) Design and experiments of the fuel control method for the scramjet engine, Sadhana vol 40, Part 1, pp 155–171, Feb 2015CrossRef Li J, Song W, Han X, Fu Q, Junniu, Xue W (2015) Design and experiments of the fuel control method for the scramjet engine, Sadhana vol 40, Part 1, pp 155–171, Feb 2015CrossRef
7.
go back to reference Gerlinger Peter, Stoll Peter, Kindler Markus, Schneider Fernando, Aigner Manfred (2008) Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced stream-wise vorticity. Aerosp Sci Technol 12:159–168CrossRef Gerlinger Peter, Stoll Peter, Kindler Markus, Schneider Fernando, Aigner Manfred (2008) Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced stream-wise vorticity. Aerosp Sci Technol 12:159–168CrossRef
8.
go back to reference Zou J, Zheng Y, Liu OJ (2007) Simulation of turbulent combustion in DLR scramjet. J Zhejiang Univ-Sc A 8(7):1053–1058CrossRef Zou J, Zheng Y, Liu OJ (2007) Simulation of turbulent combustion in DLR scramjet. J Zhejiang Univ-Sc A 8(7):1053–1058CrossRef
9.
go back to reference Oevermann Michael (2000) Numerical investigation of turbulent hydrogen combustion in a scramjet 585 using flamelet modeling. Aerosp Sci Technol 4(7):463–480CrossRef Oevermann Michael (2000) Numerical investigation of turbulent hydrogen combustion in a scramjet 585 using flamelet modeling. Aerosp Sci Technol 4(7):463–480CrossRef
10.
go back to reference Kumaran K, Behera PR, Babu V (2010) Numerical investigation of the supersonic combustion of kerosene in a strut-based combustor. J Propul Power 26(5):1084–1091CrossRef Kumaran K, Behera PR, Babu V (2010) Numerical investigation of the supersonic combustion of kerosene in a strut-based combustor. J Propul Power 26(5):1084–1091CrossRef
11.
go back to reference Gnin F, Menon S (2010) Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J 48(3):526–539 Gnin F, Menon S (2010) Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J 48(3):526–539
12.
go back to reference Huang W, Luo S, Liu J, Wang Z (2010) Effect of cavity flame holder configuration on combustion flow field performance of integrated hypersonic vehicle. Sci China Technol Sci 53(10):2725–2733CrossRef Huang W, Luo S, Liu J, Wang Z (2010) Effect of cavity flame holder configuration on combustion flow field performance of integrated hypersonic vehicle. Sci China Technol Sci 53(10):2725–2733CrossRef
13.
go back to reference Huang W, Luo S, Pourkashanian M, Ma L, Ingham DB, Liu J, Wang Z (2010) Numerical simulations of typical hydrogen-fueled scramjet combustor with a cavity flame holder. In: International conference of mechanical engineering, London, UK Huang W, Luo S, Pourkashanian M, Ma L, Ingham DB, Liu J, Wang Z (2010) Numerical simulations of typical hydrogen-fueled scramjet combustor with a cavity flame holder. In: International conference of mechanical engineering, London, UK
14.
go back to reference Gu H, Chen L, Chang X (2009) Experimental investigation on the cavity-based scramjet model. Chin Sci Bull 54(16):2794–2799 Gu H, Chen L, Chang X (2009) Experimental investigation on the cavity-based scramjet model. Chin Sci Bull 54(16):2794–2799
15.
go back to reference Kim KM, Baek SW, Han CY (2004) Numerical study on supersonic combustion with cavity-based fuel injection. Int J Heat Mass Trans 47(2):271–286CrossRef Kim KM, Baek SW, Han CY (2004) Numerical study on supersonic combustion with cavity-based fuel injection. Int J Heat Mass Trans 47(2):271–286CrossRef
16.
go back to reference Zhao Z, Song WY, Xiao YL, Le JL (2009) An experimental investigation of the cold flow field in a model scramjet combustor. PI Mech Eng G-J Aer 223(4):425–431 Zhao Z, Song WY, Xiao YL, Le JL (2009) An experimental investigation of the cold flow field in a model scramjet combustor. PI Mech Eng G-J Aer 223(4):425–431
17.
go back to reference Hsu K-Y, Carter CD, Gruber MR, Barhorst T, Smith S (2010) Experimental study of cavity strut combustion in supersonic flow. J Propul Power 26(6):1237–1246CrossRef Hsu K-Y, Carter CD, Gruber MR, Barhorst T, Smith S (2010) Experimental study of cavity strut combustion in supersonic flow. J Propul Power 26(6):1237–1246CrossRef
18.
go back to reference Huang W, Wang Z, Luo S, Liu J, Xia Z, Lei J, Wang Z, Mohamed P, Ma L, Ingham DB (2011) Overview of fuel injection techniques for scramjet engines. In: Proceedings of ASME turbo expo, Vancouver, Canada, pp 17–24 Huang W, Wang Z, Luo S, Liu J, Xia Z, Lei J, Wang Z, Mohamed P, Ma L, Ingham DB (2011) Overview of fuel injection techniques for scramjet engines. In: Proceedings of ASME turbo expo, Vancouver, Canada, pp 17–24
19.
go back to reference Waidmann W, Brummund U, Nuding J (1996) Experimental investigation of supersonic ramjet combustion (scramjet). In: 8th international symposium on transport phenomena in combustion, Taylor and Francis, Boca Raton Waidmann W, Brummund U, Nuding J (1996) Experimental investigation of supersonic ramjet combustion (scramjet). In: 8th international symposium on transport phenomena in combustion, Taylor and Francis, Boca Raton
20.
go back to reference Kumaran K, Babu V (2009) Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen. Combust Flame 156:826–841CrossRef Kumaran K, Babu V (2009) Investigation of the effect of chemistry models on the numerical predictions of the supersonic combustion of hydrogen. Combust Flame 156:826–841CrossRef
21.
go back to reference Kummitha OR, Pandey KM, Gupta R (2018) CFD analysis of a scramjet combustor with cavity based flame holders. Acta Astron 144:244–253CrossRef Kummitha OR, Pandey KM, Gupta R (2018) CFD analysis of a scramjet combustor with cavity based flame holders. Acta Astron 144:244–253CrossRef
22.
go back to reference Obula Reddy Kummitha (2017) Numerical analysis of hydrogen fuel scramjet combustor with turbulence development inserts and with different turbulence models. Int J Hydrogen Energy 42(9):6360–6368CrossRef Obula Reddy Kummitha (2017) Numerical analysis of hydrogen fuel scramjet combustor with turbulence development inserts and with different turbulence models. Int J Hydrogen Energy 42(9):6360–6368CrossRef
Metadata
Title
Numerical Study of Hydrogen-Fueled Scramjet Performance with Passive Techniques
Authors
Obula Reddy Kummitha
K. M. Pandey
Rajat Gupta
Copyright Year
2020
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-1201-8_28

Premium Partners