Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Physics of Metals and Metallography 5/2022

01-05-2022 | THEORY OF METALS

Numerical Study of Nucleation and Solidification Processes in a Modified Melt

Author: V. N. Popov

Published in: Physics of Metals and Metallography | Issue 5/2022

Login to get access
share
SHARE

Abstract

Numerical simulation of the solidification of a modified (Al–Cu) aluminum melt in a cylindrical crucible is performed. The model used describes thermodynamic processes, heterogeneous nucleation, and solidification of α and β components of the melt. A crystalline phase nucleates at the surface of spherical particles upon cooling of the melts below the liquidus temperature that changes in accordance with the concentration of dissolved alloying component. The relation between the supercooling and size of nuclei formed at the surface of nanosized particles is demonstrated. During cooling of the melt from the liquidus temperature to the eutectic temperature, the α component of the melt solidifies; during subsequent cooling, the eutectic solidification of the β component takes place. The nucleation conditions, solidification rate, and solidification time were found to differ substantially within the melt. The reliability of the suggested model is confirmed by comparison of numerical computation results with physical experiment data.
Literature
1.
go back to reference I. S. El-Mahallawi, A. Y. Shash, and A. E. Amer, “Nanoreinforced Cast Al–Si Alloys with Al 2O 3, TiO 2 and ZrO 2,” Nanopart. Met. 5, No. 2, 802–821 (2015). I. S. El-Mahallawi, A. Y. Shash, and A. E. Amer, “Nanoreinforced Cast Al–Si Alloys with Al 2O 3, TiO 2 and ZrO 2,” Nanopart. Met. 5, No. 2, 802–821 (2015).
2.
go back to reference K. Borodianskiy, A. Kossenko, and M. Zinigrad, “Improvement of the mechanical properties of Al–Si alloys by TiC nanoparticles,” Metall. Mater. Trans. A 44, 4948–4953 (2013). CrossRef K. Borodianskiy, A. Kossenko, and M. Zinigrad, “Improvement of the mechanical properties of Al–Si alloys by TiC nanoparticles,” Metall. Mater. Trans. A 44, 4948–4953 (2013). CrossRef
3.
go back to reference R. Lazarova, N. Bojanova, R. Dimitrova, V. Manolov, and I. Panov, “Influence of nanoparticles introducing in the melt of aluminum alloys on castings microstructure and properties.,” Int. J. Metalcast. 10, 466–476 (2016). CrossRef R. Lazarova, N. Bojanova, R. Dimitrova, V. Manolov, and I. Panov, “Influence of nanoparticles introducing in the melt of aluminum alloys on castings microstructure and properties.,” Int. J. Metalcast. 10, 466–476 (2016). CrossRef
4.
go back to reference P. M. Kuzmanov, S. I. Popov, L. V. Yovkov, R. N. Dimitrova, A. N. Cherepanov, and V. K. Manolov, “Investigation the effect of modification with nanopowders on crystallization process and microstructure of some alloys,” AIP Conf. Proc. 1893, 030104(1–8) (2017). P. M. Kuzmanov, S. I. Popov, L. V. Yovkov, R. N. Dimitrova, A. N. Cherepanov, and V. K. Manolov, “Investigation the effect of modification with nanopowders on crystallization process and microstructure of some alloys,” AIP Conf. Proc. 1893, 030104(1–8) (2017).
5.
go back to reference B. Chalmers, Principles of Solidification (Wiley, New York, 1964), p. 288. B. Chalmers, Principles of Solidification (Wiley, New York, 1964), p. 288.
6.
go back to reference M. C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974), p. 424. CrossRef M. C. Flemings, Solidification Processing (McGraw-Hill, New York, 1974), p. 424. CrossRef
7.
go back to reference D. Turnbull, “Formation of crystal nuclei in liquid metals,” J. App. Phys. 21, 1022–1028 (1950). CrossRef D. Turnbull, “Formation of crystal nuclei in liquid metals,” J. App. Phys. 21, 1022–1028 (1950). CrossRef
8.
go back to reference N. H. Fletcher, “Size effect in heterogeneous nucleation,” J. Chem. Phys. 29, No. 3, 572–576 (1958). CrossRef N. H. Fletcher, “Size effect in heterogeneous nucleation,” J. Chem. Phys. 29, No. 3, 572–576 (1958). CrossRef
9.
go back to reference I. Maxwell and A. Hellawell, “A simple model for grain refinement during solidification,” Acta Metall. 23, No. 2, 229–237 (1975). CrossRef I. Maxwell and A. Hellawell, “A simple model for grain refinement during solidification,” Acta Metall. 23, No. 2, 229–237 (1975). CrossRef
10.
go back to reference S. Popov, V. Manolov, P. Kuzmanov, and A. Cherepanov, “Mathematical model of crystallization of multicomponent alloy at presence of nanoparticles,” J. Mater. Sci. Technol. 22, No. 3, 167–174 (2014). S. Popov, V. Manolov, P. Kuzmanov, and A. Cherepanov, “Mathematical model of crystallization of multicomponent alloy at presence of nanoparticles,” J. Mater. Sci. Technol. 22, No. 3, 167–174 (2014).
11.
go back to reference B. B. Alchagirov and Kh. B. Khokonov, “Wettability of surfaces of solids by melts of alkali metals and alloys with their participation. Theory and research methods,” Teplofiz. Vys. Temp. 32, No. 4, 590–626 (1994). B. B. Alchagirov and Kh. B. Khokonov, “Wettability of surfaces of solids by melts of alkali metals and alloys with their participation. Theory and research methods,” Teplofiz. Vys. Temp. 32, No. 4, 590–626 (1994).
12.
go back to reference A. P. Kalinina, A. N. Cherepanov, V. A. Poluboyarov, and Z. A. Korotaeva, “A mathematical model of nucleation in liquid metals on ultradisperse ceramic particles,” Russ. J. Phys. Chem. A 75. No. 2, 227–233 (2001). A. P. Kalinina, A. N. Cherepanov, V. A. Poluboyarov, and Z. A. Korotaeva, “A mathematical model of nucleation in liquid metals on ultradisperse ceramic particles,” Russ. J. Phys. Chem. A 75. No. 2, 227–233 (2001).
13.
go back to reference A. I. Hienola, P. M. Winkler, P. E. Wagne, H. Vehkamaki, A. Lauri, I. Napari, and M. Kulmala, “Estimation of line tension and contact angle from heterogeneous nucleation experimental data,” J. Chem. Phys. 126, No. 9, 094705 (2007). CrossRef A. I. Hienola, P. M. Winkler, P. E. Wagne, H. Vehkamaki, A. Lauri, I. Napari, and M. Kulmala, “Estimation of line tension and contact angle from heterogeneous nucleation experimental data,” J. Chem. Phys. 126, No. 9, 094705 (2007). CrossRef
14.
go back to reference M. Qian and J. Ma, “Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher’s classical model and the new perspectives derived,” J. Chem. Phys. 130, 214709(1–7) (2009). M. Qian and J. Ma, “Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher’s classical model and the new perspectives derived,” J. Chem. Phys. 130, 214709(1–7) (2009).
15.
go back to reference A. M. Kats, “Improvement of the theory of heterogeneous crystallization of metals and choice of the nanomodifier particle sizes,” Crystallogr. Rep. 56, No. 2, 373–382 (2011). CrossRef A. M. Kats, “Improvement of the theory of heterogeneous crystallization of metals and choice of the nanomodifier particle sizes,” Crystallogr. Rep. 56, No. 2, 373–382 (2011). CrossRef
16.
go back to reference M. Iwamatsu, “Line-tension-induced scenario of heterogeneous nucleation on a spherical substrate and in a spherical cavity,” J. Chem. Phys. 143, 014701(1–12) (2015). M. Iwamatsu, “Line-tension-induced scenario of heterogeneous nucleation on a spherical substrate and in a spherical cavity,” J. Chem. Phys. 143, 014701(1–12) (2015).
17.
go back to reference Y. Song, H. Jiang, L. Zhang, S. Li, J. Zhao, and J. He, “A model describing solidification microstructure evolution in an inoculated aluminum alloys,” Acta Metall. Sin. (Engl. Lett.). 34, 861–871 (2021). Y. Song, H. Jiang, L. Zhang, S. Li, J. Zhao, and J. He, “A model describing solidification microstructure evolution in an inoculated aluminum alloys,” Acta Metall. Sin. (Engl. Lett.). 34, 861–871 (2021).
18.
go back to reference A. I. Trotsan, I. L. Brodetskii, and V. V. Kaverinskii, Modification of Iron-Carbon Melts with Dispersed Powders (LAP, Saarbrücken, 2012). A. I. Trotsan, I. L. Brodetskii, and V. V. Kaverinskii, Modification of Iron-Carbon Melts with Dispersed Powders (LAP, Saarbrücken, 2012).
19.
go back to reference V. N. Popov and A. N. Cherepanov, “Modeling of the alloy solidification modified by refractory nano-size particles,” Eur. Phys. J. Spec. Top. 229, No. 2–3, 467–474 (2021). CrossRef V. N. Popov and A. N. Cherepanov, “Modeling of the alloy solidification modified by refractory nano-size particles,” Eur. Phys. J. Spec. Top. 229, No. 2–3, 467–474 (2021). CrossRef
20.
go back to reference V. N. Popov and A. N. Cherepanov, “Modeling of nano-modified binary alloy crystallization processes,” Mat. Model. 31, No. 11, 89–101 (2019). V. N. Popov and A. N. Cherepanov, “Modeling of nano-modified binary alloy crystallization processes,” Mat. Model. 31, No. 11, 89–101 (2019).
21.
go back to reference M. Xue, Y. Heichal, S. Chandra, and J. Mostaghimi, “Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermal contact resistance,” Mater Sci. 42, 9–18 (2007). CrossRef M. Xue, Y. Heichal, S. Chandra, and J. Mostaghimi, “Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermal contact resistance,” Mater Sci. 42, 9–18 (2007). CrossRef
22.
go back to reference R. C. Tolman, “The effect of droplet size on surface tension,” J. Chem. Phys. 17, 333–337 (1949). CrossRef R. C. Tolman, “The effect of droplet size on surface tension,” J. Chem. Phys. 17, 333–337 (1949). CrossRef
23.
go back to reference A. N. Kolmogorov, “On the statistic theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Matem. 1, No. 3, 355–359 (1937). A. N. Kolmogorov, “On the statistic theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Matem. 1, No. 3, 355–359 (1937).
24.
go back to reference J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, 2002), p. 1200. J. W. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, 2002), p. 1200.
25.
go back to reference E. Scheil, “Bemerkungen zur schichtkristallbildung,“ Z. Metallkunde 34, 70–72 (1942). E. Scheil, “Bemerkungen zur schichtkristallbildung,“ Z. Metallkunde 34, 70–72 (1942).
26.
go back to reference A. A. Samarskii and Nikolaev, B.S., Methods for Solving Grid Equations (Nauka, Moscow, 1978). A. A. Samarskii and Nikolaev, B.S., Methods for Solving Grid Equations (Nauka, Moscow, 1978).
27.
go back to reference V. E. Zinov’ev, Thermophysical Properties of Metals under High Temperatures (Metallurgiya, Moscow, 1989). V. E. Zinov’ev, Thermophysical Properties of Metals under High Temperatures (Metallurgiya, Moscow, 1989).
Metadata
Title
Numerical Study of Nucleation and Solidification Processes in a Modified Melt
Author
V. N. Popov
Publication date
01-05-2022
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 5/2022
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2205012X