Skip to main content
Top
Published in: Journal of Scientific Computing 3/2015

01-03-2015

Numerical Treatment of Interfaces for Second-Order Wave Equations

Authors: Florencia Parisi, Mariana Cécere, Mirta Iriondo, Oscar Reula

Published in: Journal of Scientific Computing | Issue 3/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article we develop a numerical scheme to deal with interfaces between touching numerical grids when solving the second-order wave equation. We show that it is possible to implement an interface scheme of “penalty” type for the second-order wave equation, similar to the ones used for first-order hyperbolic and parabolic equations, and the second-order scheme used by Mattsson et al. 2008. These schemes, known as SAT schemes for finite difference approximations and penalties for spectral ones, and ours share similar properties but in our case one needs to pass at the interface a smaller amount of data than previously known schemes. This is important for multi-block parallelizations in several dimensions, for it implies that one obtains the same solution quality while sharing among different computational grids only a fraction of the data one would need for a comparable (in accuracy) SAT or Mattsson et al.’s scheme. The semi-discrete approximation used here preserves the norm and uses standard finite-difference operators satisfying summation by parts. For the time integrator we use a semi-implicit IMEX Runge–Kutta method. This is crucial, since the explicit Runge–Kutta method would be impractical given the severe restrictions that arise from the stiff parts of the equations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Notice that some signs in (15) are different from those appearing in [1], which contain some typos.
 
2
Here we aim at an accuracy of about one part in \(10^{3}\) for \(10\) periods. Enough to keep the phase without appreciable error for about \(10\) crossing times.
 
3
This is of course true in the case of scalar quantities. In the case we were dealing with systems of wave equations applied to tensor quantities, some coordinate transformations are unavoidable at interfaces.
 
Literature
1.
go back to reference Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave-propagation in discontinuous media. J. Comput. Phys. 227, 8753–8767 (2008)CrossRefMATHMathSciNet Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave-propagation in discontinuous media. J. Comput. Phys. 227, 8753–8767 (2008)CrossRefMATHMathSciNet
2.
go back to reference Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)CrossRefMATHMathSciNet Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148(2), 341–365 (1999)CrossRefMATHMathSciNet
4.
go back to reference Kreiss, H., Ortiz, O.: Some Mathematical and Numerical Questions Connected with First and Second Order Time-Dependent Systems of Partial Differential Equations. Lectures Notes in Physics, vol. 604 (2002) Kreiss, H., Ortiz, O.: Some Mathematical and Numerical Questions Connected with First and Second Order Time-Dependent Systems of Partial Differential Equations. Lectures Notes in Physics, vol. 604 (2002)
5.
go back to reference Kreiss, H.-O., Scherer, G.: On the Existence of Energy Estimates for Difference Approximations for Hyperbolic Systems. Tech. Rep. Dept. of Scientific Computing, Uppsala University (1977) Kreiss, H.-O., Scherer, G.: On the Existence of Energy Estimates for Difference Approximations for Hyperbolic Systems. Tech. Rep. Dept. of Scientific Computing, Uppsala University (1977)
7.
go back to reference Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)MATH Gustafsson, B., Kreiss, H.-O., Oliger, J.: Time Dependent Problems and Difference Methods. Wiley, New York (1995)MATH
8.
go back to reference Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503–540 (2004)CrossRefMATHMathSciNet Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second derivatives. J. Comput. Phys. 199, 503–540 (2004)CrossRefMATHMathSciNet
9.
go back to reference Mattsson, K., Parisi, F.: Stable and accurate second-order formulation of the shifted wave equation. Commun. Comput. Phys. 7, 103–137 (2010)MathSciNet Mattsson, K., Parisi, F.: Stable and accurate second-order formulation of the shifted wave equation. Commun. Comput. Phys. 7, 103–137 (2010)MathSciNet
10.
go back to reference Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)CrossRefMATHMathSciNet Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)CrossRefMATHMathSciNet
11.
go back to reference Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)MATHMathSciNet Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)MATHMathSciNet
13.
go back to reference Diener, P., Dorband, E.N., Schnetter, E., Tiglio, M.: Optimized high-order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions. J. Sci. Comput. 32, 109–145 (2007)CrossRefMATHMathSciNet Diener, P., Dorband, E.N., Schnetter, E., Tiglio, M.: Optimized high-order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions. J. Sci. Comput. 32, 109–145 (2007)CrossRefMATHMathSciNet
14.
go back to reference Kreiss, H., Oliger, J.: Methods for the Approximate Solution of Time Dependent Problems. GARP Publication Series No. 10. WMO, ICSU, Geneva (1973) Kreiss, H., Oliger, J.: Methods for the Approximate Solution of Time Dependent Problems. GARP Publication Series No. 10. WMO, ICSU, Geneva (1973)
17.
go back to reference Alcubierre, M., Allen, G., Bona, C., Fiske, D., Goodale, T., Guzmán, F.S., Hawke, I., Hawley, S.H., Husa, S., Koppitz, M., Lechner, C., Pollney, D., Rideout, D., Salgado, M., Schnetter, E., Seidel, E., Shinkai, H.-A., Shoemaker, D., Szilágyi, B., Takahashi, R., Winicour, J.: Towards standard testbeds for numerical relativity. Class. Quantum Gravity 21, 589–613 (2004). doi:10.1088/0264-9381/21/2/019 CrossRefMATH Alcubierre, M., Allen, G., Bona, C., Fiske, D., Goodale, T., Guzmán, F.S., Hawke, I., Hawley, S.H., Husa, S., Koppitz, M., Lechner, C., Pollney, D., Rideout, D., Salgado, M., Schnetter, E., Seidel, E., Shinkai, H.-A., Shoemaker, D., Szilágyi, B., Takahashi, R., Winicour, J.: Towards standard testbeds for numerical relativity. Class. Quantum Gravity 21, 589–613 (2004). doi:10.​1088/​0264-9381/​21/​2/​019 CrossRefMATH
Metadata
Title
Numerical Treatment of Interfaces for Second-Order Wave Equations
Authors
Florencia Parisi
Mariana Cécere
Mirta Iriondo
Oscar Reula
Publication date
01-03-2015
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2015
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9880-7

Other articles of this Issue 3/2015

Journal of Scientific Computing 3/2015 Go to the issue

Premium Partner