Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

23-11-2019 | Original Article | Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020

Object-based feature extraction for hyperspectral data using firefly algorithm

Journal:
International Journal of Machine Learning and Cybernetics > Issue 6/2020
Authors:
Hamid Reza Shahdoosti, Zahra Tabatabaei
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Object-based classification methods can improve the accuracy of hyperspectral image classification due to the fact that they incorporate spatial information into the classification procedure by assigning neighboring pixels into the same class. In this paper, a new object-based feature extraction method is proposed which makes use of information theory to reduce the Bayes error. In this way, the proposed method exploits higher order statistics for feature extraction which are very effective for non Gaussian data such as hyperspectral images. The criterion to be minimized is composed of three mutual information terms. The first and second terms, consider the maximal relevance and minimal redundancy, respectively, while the third term takes into account the segmentation map containing disjoint spatial regions. To obtain the segmentation map, we apply the firefly clustering algorithm whose fitness function simultaneously considers the intra-distance between samples and their cluster centroids, and inter-distance between centroids of any two clusters. Our experimental results, performed using a variety of hyperspectral scenes, indicate that the proposed framework gives better classification results than some state-of the-art spectral–spatial feature extraction methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 6/2020

International Journal of Machine Learning and Cybernetics 6/2020 Go to the issue