Skip to main content
Top

2025 | OriginalPaper | Chapter

Object Counting from Images Using Deep Learning Technique

Authors : Arishpreet Kour Bali, Amit Kumar

Published in: Innovative Computing and Communications

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article gives an overview of object counting problem and its usage. It also describes various ways of counting objects from still images and video streams. Object counting is an important task in machine learning. It helps to identify objects in an image, so that the number of objects can be determined. However, there are many challenges when it comes to object counting using deep learning techniques such as illumination, variation, occlusion, and real-time counting. We have also reviewed some of the recent papers to get an idea of current technology. At last through one example, we have discussed how object counting can be happened through deep learning techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baldominos, A., Saez, Y., & Isasi, P. (2019). A survey of hand written character recognition with MNIST and EMNIST. Applied Sciences, 9(15), 3169. Baldominos, A., Saez, Y., & Isasi, P. (2019). A survey of hand written character recognition with MNIST and EMNIST. Applied Sciences, 9(15), 3169.
2.
go back to reference Geron, A. (2022). Hands-on machine learning with Scikit-learn, Keras, and TensorFlow. O’Reilly Media, Inc. Geron, A. (2022). Hands-on machine learning with Scikit-learn, Keras, and TensorFlow. O’Reilly Media, Inc.
3.
go back to reference Robertson, J. G. (1986). Optical extraction of single-object spectra from observations with two-dimensional detectors. Publications of the Astronomical Society of the Pacific, 98(609), 1220. Robertson, J. G. (1986). Optical extraction of single-object spectra from observations with two-dimensional detectors. Publications of the Astronomical Society of the Pacific, 98(609), 1220.
4.
go back to reference Dirir, A. (2021). An advanced deep learning approach for multi-object counting in urban vehicular environments. Future Internet, 13(12), 306. Dirir, A. (2021). An advanced deep learning approach for multi-object counting in urban vehicular environments. Future Internet, 13(12), 306.
6.
go back to reference Bezdek, J. C., Ehrlich, R., Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers Geosciences, 10(2–3), 191–203. Bezdek, J. C., Ehrlich, R., Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers Geosciences, 10(2–3), 191–203.
7.
go back to reference Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS136: AK-means clustering algorithm. Journal of the Royal Statistical Society Series C (Applied Statistics), 28(1), 100–108; Spampinato, D., Chen-Burger, Y.-H., Nadarajan, G., & Fisher, R. B. (2008). Detecting, tracking and counting fish in low quality unconstrained underwater videos. VISAPP, 1(2), 514–519. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS136: AK-means clustering algorithm. Journal of the Royal Statistical Society Series C (Applied Statistics), 28(1), 100–108; Spampinato, D., Chen-Burger, Y.-H., Nadarajan, G., & Fisher, R. B. (2008). Detecting, tracking and counting fish in low quality unconstrained underwater videos. VISAPP, 1(2), 514–519.
8.
go back to reference Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., & Lin, C.-W. (2020). Deep learning on image denoising: An overview. Neural Networks, 131, 251–275. Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., & Lin, C.-W. (2020). Deep learning on image denoising: An overview. Neural Networks, 131, 251–275.
9.
go back to reference Hung, C.-Y., Chen, W.-C., Lai, P.-T., Lin, C.-H., & Lee, C.-C. (2017). Comparing deep neural network and other machine learning algorithms for stroke prediction in a large—Scale population-based electronic medical claims database. In 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 3110–3113. Hung, C.-Y., Chen, W.-C., Lai, P.-T., Lin, C.-H., & Lee, C.-C. (2017). Comparing deep neural network and other machine learning algorithms for stroke prediction in a large—Scale population-based electronic medical claims database. In 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 3110–3113.
10.
go back to reference Guo, Z., & Hall, R. W. (1989). Parallel thinning with two-subiteration algorithms. Communications of the ACM, 32(3), 359–373. Guo, Z., & Hall, R. W. (1989). Parallel thinning with two-subiteration algorithms. Communications of the ACM, 32(3), 359–373.
11.
go back to reference Maron, O., & Lozano-Perez, T. (1997). A framework for multiple-instance learning. Advances in Neural Information Processing Systems, 10. Maron, O., & Lozano-Perez, T. (1997). A framework for multiple-instance learning. Advances in Neural Information Processing Systems, 10.
12.
go back to reference Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.
13.
go back to reference Madec, S. (2019). Ear density estimation from high resolution RGB imagery using deep learning technique. Agricultural and Forest Meteorology, 264, 225–234. Madec, S. (2019). Ear density estimation from high resolution RGB imagery using deep learning technique. Agricultural and Forest Meteorology, 264, 225–234.
14.
go back to reference Nguyen, J. Y., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision and pattern recognition, 427–436. Nguyen, J. Y., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer vision and pattern recognition, 427–436.
15.
go back to reference Onoro-Rubio, D., & Lopez-Sastre, R. J. (2016). Towards perspective-free object counting with deep learning. In European conference on computer vision, 615–629. Onoro-Rubio, D., & Lopez-Sastre, R. J. (2016). Towards perspective-free object counting with deep learning. In European conference on computer vision, 615–629.
16.
go back to reference Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. In 2018 first international conference on secure cyber computing and communication (ICSCCC), 278–282. Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional neural network (CNN) for image detection and recognition. In 2018 first international conference on secure cyber computing and communication (ICSCCC), 278–282.
17.
go back to reference Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural network model. IEEE Transactions on Neural Networks, 20(1), 61–80.
18.
go back to reference Chen, W., Luo, J., & Parker, K. J. (1998). Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Transactions on Image Processing, 7(12), 1673–1683. Chen, W., Luo, J., & Parker, K. J. (1998). Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications. IEEE Transactions on Image Processing, 7(12), 1673–1683.
19.
go back to reference Berg, S. (2019). Ilastik: Interactive machine learning for (bio) image analysis. Nature Methods, 16(12), 1226–1232. Berg, S. (2019). Ilastik: Interactive machine learning for (bio) image analysis. Nature Methods, 16(12), 1226–1232.
20.
go back to reference Kuznetsova, A. (2020). The open images dataset v4. International Journal of Computer Vision, 128(7), 1956–1981. Kuznetsova, A. (2020). The open images dataset v4. International Journal of Computer Vision, 128(7), 1956–1981.
Metadata
Title
Object Counting from Images Using Deep Learning Technique
Authors
Arishpreet Kour Bali
Amit Kumar
Copyright Year
2025
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-4152-6_17