Skip to main content
Top

2019 | OriginalPaper | Chapter

Object Grasping of Humanoid Robot Based on YOLO

Authors : Li Tian, Nadia Magnenat Thalmann, Daniel Thalmann, Zhiwen Fang, Jianmin Zheng

Published in: Advances in Computer Graphics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents a system that aims to achieve autonomous grasping for micro-controller based humanoid robots such as the Inmoov robot [1]. The system consists of a visual sensor, a central controller and a manipulator. We modify the open sourced objection detection software YOLO (You Only Look Once) v2 [2] and associate it with the visual sensor to make the sensor be able to detect not only the category of the target object but also the location with the help of a depth camera. We also estimate the dimensions (i.e., the height and width) of the target based on the bounding box technique (Fig. 1). After that, we send the information to the central controller (a humanoid robot), which controls the manipulator (customised robotic hand) to grasp the object with the help of inverse kinematics theory. We conduct experiments to test our method with the Inmoov robot. The experiments show that our method is capable of detecting the object and driving the robotic hands to grasp the target object.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017) Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)
3.
go back to reference Han, J., et al.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)CrossRef Han, J., et al.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)CrossRef
4.
go back to reference Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2015) Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (2015)
5.
go back to reference Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014) Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2014)
6.
go back to reference Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016) Redmon, J., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
7.
go back to reference Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton. Robots 38(1), 65–88 (2015)CrossRef Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton. Robots 38(1), 65–88 (2015)CrossRef
8.
go back to reference Tikhanoff, V., et al.: Exploring affordances and tool use on the iCub. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE (2013) Tikhanoff, V., et al.: Exploring affordances and tool use on the iCub. In: 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids). IEEE (2013)
9.
go back to reference Kurban, R., Skuka, F., Bozpolat, H.: Plane segmentation of kinect point clouds using RANSAC. In: The 7th International Conference on Information Technology (2015) Kurban, R., Skuka, F., Bozpolat, H.: Plane segmentation of kinect point clouds using RANSAC. In: The 7th International Conference on Information Technology (2015)
10.
go back to reference Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRef Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRef
11.
go back to reference Dakarimov, S., et al.: Study on the development and control of humanoid robot arm using MatLab/Arduino. 유공압건설기계학회 학술대회논문집, pp. 88–90 (2018) Dakarimov, S., et al.: Study on the development and control of humanoid robot arm using MatLab/Arduino. 유공압건설기계학회 학술대회논문집, pp. 88–90 (2018)
12.
13.
go back to reference Tian, L., et al.: The making of a 3D-printed, cable-driven, single-model, lightweight humanoid robotic hand. Front. Robot. AI 4, 65 (2017)CrossRef Tian, L., et al.: The making of a 3D-printed, cable-driven, single-model, lightweight humanoid robotic hand. Front. Robot. AI 4, 65 (2017)CrossRef
14.
go back to reference Tian, L., et al.: A methodology to model and simulate customized realistic anthropomorphic robotic hands. In: Proceedings of Computer Graphics International 2018. ACM (2018) Tian, L., et al.: A methodology to model and simulate customized realistic anthropomorphic robotic hands. In: Proceedings of Computer Graphics International 2018. ACM (2018)
15.
go back to reference Tian, L., et al.: Nature grasping by a cable-driven under-actuated anthropomorphic robotic hand. TELKOMNIKA 17(1), 1–7 (2019)CrossRef Tian, L., et al.: Nature grasping by a cable-driven under-actuated anthropomorphic robotic hand. TELKOMNIKA 17(1), 1–7 (2019)CrossRef
Metadata
Title
Object Grasping of Humanoid Robot Based on YOLO
Authors
Li Tian
Nadia Magnenat Thalmann
Daniel Thalmann
Zhiwen Fang
Jianmin Zheng
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-22514-8_47

Premium Partner