Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

6. Object Recognition Methods in a Built Environment

Abstract

Recognition of an object from a point cloud, image or video is an important task in computer vision which plays a crucial role in many real-world applications. The challenges involved in object recognition, aiming at locating object instances from a large number of predefined categories in collections (images, video or, model library), are multi-model, multi-pose, complicated background, occlusion, and depth variations. In the past few years numerous methods were developed to tackle these challenges and have reported remarkable progress for 3D objects. However, suitable methods of object recognition are needed to achieve added value in built environment. Suitable acquisition methods are also necessary to compensate the impact of darkness, dirt, and occlusion. This chapter provides a comprehensive overview of the recent advances in 3D object recognition of indoor objects using Convolutional Neural Networks (CNN). Methodology for object recognition, approaches for point cloud generation, and test bases are presented. The comparison of main recognition methods based on methods of geometric shape descriptor and supervised learning and their strengths and weakness are also included. The focus lies on the specific requirements and constrains in an industrial environment like tight assembly, light, dirt, occlusion, or incomplete data sets. Finally, a recommendation for use of existing CNN framework for implementation of an automatic object recognition procedure is given.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Literature
30.
go back to reference Quadros A (2013) Representing 3D shape in sparse range images for urban object classification. Ph.D. thesis, The University of Sydney Quadros A (2013) Representing 3D shape in sparse range images for urban object classification. Ph.D. thesis, The University of Sydney
31.
go back to reference Lehtola VV, Kaartinen H, Nüchter A, Kaijaluoto R, Kukko A, Litkey P, Honkavaara E, Rosnell T, Vaaja MT, Virtanen J-P, Kurkela M, El Issaoui A, Zhu L, Jaakkola A, Hyyppä J (2017) Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods. Remote Sensing 9:796. https://​doi.​org/​10.​3390/​rs9080796 CrossRef Lehtola VV, Kaartinen H, Nüchter A, Kaijaluoto R, Kukko A, Litkey P, Honkavaara E, Rosnell T, Vaaja MT, Virtanen J-P, Kurkela M, El Issaoui A, Zhu L, Jaakkola A, Hyyppä J (2017) Comparison of the selected state-of-the-art 3D indoor scanning and point cloud generation methods. Remote Sensing 9:796. https://​doi.​org/​10.​3390/​rs9080796 CrossRef
39.
go back to reference Sommer M, Stjepandić J, Stobrawa S, von Soden M (2021) Automated generation of a digital twin in manufacturing for a built environment using scan and object detection. J Indus Inform Integr XX (in press) Sommer M, Stjepandić J, Stobrawa S, von Soden M (2021) Automated generation of a digital twin in manufacturing for a built environment using scan and object detection. J Indus Inform Integr XX (in press)
43.
go back to reference Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017 Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26 July 2017
Metadata
Title
Object Recognition Methods in a Built Environment
Authors
Josip Stjepandić
Markus Sommer
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-77539-1_6

Premium Partner