Skip to main content
Top
Published in: Journal of Elasticity 2/2019

25-09-2018

Objective Symmetrically Physical Strain Tensors, Conjugate Stress Tensors, and Hill’s Linear Isotropic Hyperelastic Material Models

Author: S. N. Korobeynikov

Published in: Journal of Elasticity | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We introduce a new family of strain tensors—a family of symmetrically physical (SP) strain tensors—which is also a subfamily of the well-known Hill family of strain tensors. For the further analysis, five scale functions are chosen which generate strain tensors belonging to the families of strain tensors previously introduced by other authors (i.e., the Doyle–Ericksen, Curnier–Rakotomanana, Curnier–Zysset, Itskov, and Darijani–Naghdabadi families) and to the new family of SP strain tensors. In particular, these five scale functions include the scale function generating the Lagrangian and Eulerian Hencky strain tensors. We introduce the family of SPH models of isotropic hyperelastic materials (with Hill’s linear relations) which are generated by SP strain tensors and work-conjugate stress tensors based on Hill’s natural generalization of Hooke’s law. Five SPH models of isotropic hyperelastic materials are generated on the basis of chosen SP strain tensors and work-conjugate stress tensors. These models are tested by solving two problems with homogeneous strain and stress tensors fields: the simple elongation and simple shear problems. Analysis of these solutions shows that the solutions of both problems for the Hencky isotropic hyperelastic material model (one of the five generated SPH models of isotropic hyperelastic materials) are qualitatively different from the solutions for the remaining four material models. That is, the solutions using the Hencky isotropic hyperelastic material model are of yielding nature typical of inelastic deformation of metals whereas the solutions for the other four material models reproduce strain diagrams typical of rubber.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Hooke’s law using Cauchy stress and strain tensors cannot be directly used in large strains mechanics because of the non-objectivity of the Cauchy strain tensor [31].
 
2
In the cited papers, an anomalous behavior of the solutions of problems using the St. Venant–Kirchhoff isotropic hyperelastic material model at large strains is noted.
 
3
The rotated Kirchhoff stress tensor and the right logarithmic (Hencky) strain tensor are used in the Lagrangian version of the constitutive relations of the Hencky material model, and the Kirchhoff stress tensor and the left logarithmic (Hencky) strain tensor are used in the Eulerian version of the constitutive relations of this material model.
 
4
Hereinafter, \(\mathcal{T}^{2}_{\text{sym}}\subset\mathcal{T}^{2}\) denotes the set of all symmetric second-order tensors.
 
5
Hereinafter, \(m\) is the eigenindex, \(\lambda_{i}>0\) are eigenvalues, and \(\mathbf{U}_{i}\) and \(\mathbf{V}_{i}\) (\(i=1,\ldots m\)) are subordinate eigenprojections (see, e.g., [11, 17, 34, 54, 69]) of the tensors \(\mathbf{U}\) and \(\mathbf{V}\), respectively.
 
6
Some authors call this family of strain tensors the Seth–Hill family of strain tensors (see, e.g., [20]).
 
7
In [20], this family is termed the rubber family.
 
8
\(\mathbf{D}\in\mathcal{T}^{2}_{\text{sym}}\) is the Lagrangian rotated stretching or rotated strain rate tensor (see, e.g., [20]).
 
9
\(\mathbf{d}\in\mathcal{T}^{2}_{\text{sym}}\) is the Eulerian stretching or strain rate tensor (see, e.g., [73]). The rotated stretching tensor \(\mathbf{D}\) is the Lagrangian counterpart of the stretching tensor \(\mathbf{d}\), i.e., \(\mathbf{D}=\mathbf{R}^{T}\cdot\mathbf{d} \cdot\mathbf{R}\).
 
10
\(\bar{ \boldsymbol{\tau}}\in\mathcal{T}^{2}_{\text{sym}}\) is the Lagrangian rotated Kirchhoff (or Noll) stress tensor (see, e.g., [20]).
 
11
\(\boldsymbol{\tau}\in\mathcal{T}^{2}_{\text{sym}}\) is the Eulerian Kirchhoff stress tensor (see, e.g., [41, 61]). The rotated Kirchhoff stress tensor \(\bar{\boldsymbol{\tau}}\) is the Lagrangian counterpart of the Kirchhoff stress tensor \(\boldsymbol{\tau}\), i.e., \(\bar{ \boldsymbol{\tau}}=\mathbf{R}^{T}\cdot\boldsymbol{\tau} \cdot \mathbf{R}\).
 
12
Strain tensors in the pairs \((\mathbf{S}, \mathbf{E})\) and \((\mathbf{s},\mathbf{e})\) belong to the Hill family.
 
13
Often the tensor \(\mathbf{P}^{T}\) is called the nominal stress tensor (see, e.g., [61]).
 
14
Hereinafter, \(\sigma_{ij}\) (\(i,j=1,2,3\)) are the Cauchy stress tensor \(\boldsymbol{\sigma}\) components in the introduced coordinate system.
 
15
In the literature on linear elasticity theory, the material parameters \(E\) and \(\nu\) are called Young’s modulus and Poisson’s ratio.
 
16
The ranges of admissible values in (67) are obtained the from constitutive inequalities applied to the values of the parameters \(\lambda\) and \(\mu\) (\(\mu>0\), \(3\lambda+ 2\mu>0\), see, e.g., [6]) taking into account the equalities (56) and the standard assumption \(E>0\).
 
17
The principal directions in the simple shear problem are determined, e.g., in [34].
 
18
In the solution of this problem based on linear elasticity theory, the length of the axis of a rod of an isotropic material does not change.
 
19
For homogeneous deformation of a prismatic bar, equality (85) in fact reduces to the Considère (1888) condition for the instability of the deformation of a prismatic bar when the axial load on this bar reaches an extreme value (cf., [6], p. 166).
 
Literature
1.
go back to reference Adamov, A.A.: Comparative analysis of the two-constant generalizations of Hooke’s law for isotropic elastic materials at finite strains. J. Appl. Mech. Tech. Phys. 42(5), 890–897 (2001) ADSMATHCrossRef Adamov, A.A.: Comparative analysis of the two-constant generalizations of Hooke’s law for isotropic elastic materials at finite strains. J. Appl. Mech. Tech. Phys. 42(5), 890–897 (2001) ADSMATHCrossRef
2.
go back to reference Anand, L.: On Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46(1), 78–82 (1979) ADSMATHCrossRef Anand, L.: On Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46(1), 78–82 (1979) ADSMATHCrossRef
3.
go back to reference Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986) ADSCrossRef Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986) ADSCrossRef
5.
go back to reference Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36, 421–432 (2001) ADSMATHCrossRef Batra, R.C.: Comparison of results from four linear constitutive relations in isotropic finite elasticity. Int. J. Non-Linear Mech. 36, 421–432 (2001) ADSMATHCrossRef
7.
go back to reference Bažant, Z.P.: Finite strain generalization of small-strain constitutive relations for any finite strain tensor and additive volumetric-deviatoric split. Int. J. Solids Struct. 33(20–22), 2887–2897 (1996) MATHCrossRef Bažant, Z.P.: Finite strain generalization of small-strain constitutive relations for any finite strain tensor and additive volumetric-deviatoric split. Int. J. Solids Struct. 33(20–22), 2887–2897 (1996) MATHCrossRef
8.
go back to reference Bažant, Z.P.: Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate. J. Eng. Mater. Technol. 120, 131–136 (1998) CrossRef Bažant, Z.P.: Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate. J. Eng. Mater. Technol. 120, 131–136 (1998) CrossRef
9.
go back to reference Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987) ADSCrossRef Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl. Mech. Rev. 40(12), 1699–1734 (1987) ADSCrossRef
10.
go back to reference Bertram, A., Böhlke, T., Šilhavý, M.: On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J. Elast. 86, 235–243 (2007) MathSciNetMATHCrossRef Bertram, A., Böhlke, T., Šilhavý, M.: On the rank 1 convexity of stored energy functions of physically linear stress-strain relations. J. Elast. 86, 235–243 (2007) MathSciNetMATHCrossRef
11.
go back to reference Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Heidelberg (2012) MATHCrossRef Bertram, A.: Elasticity and Plasticity of Large Deformations: An Introduction, 3rd edn. Springer, Heidelberg (2012) MATHCrossRef
12.
go back to reference Billington, E.W.: Constitutive equation for a class of isotropic, perfectly elastic solids using a new measure of finite strain and corresponding stress. J. Eng. Math. 45, 117–134 (2003) MathSciNetMATHCrossRef Billington, E.W.: Constitutive equation for a class of isotropic, perfectly elastic solids using a new measure of finite strain and corresponding stress. J. Eng. Math. 45, 117–134 (2003) MathSciNetMATHCrossRef
13.
go back to reference Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008) MATHCrossRef Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008) MATHCrossRef
14.
go back to reference de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Chichester (2012) MATHCrossRef de Borst, R., Crisfield, M.A., Remmers, J.J.C., Verhoosel, C.V.: Non-linear Finite Element Analysis of Solids and Structures, 2nd edn. Wiley, Chichester (2012) MATHCrossRef
15.
go back to reference Bruhns, O.T., Meyers, A., Xiao, H.: Hencky’s elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods. Arch. Mech. 52(4–5), 489–509 (2000) MathSciNetMATH Bruhns, O.T., Meyers, A., Xiao, H.: Hencky’s elasticity model with the logarithmic strain measure: a study on Poynting effect and stress response in torsion of tubes and rods. Arch. Mech. 52(4–5), 489–509 (2000) MathSciNetMATH
16.
go back to reference Bruhns, O.T., Xiao, H., Meyers, A.: Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. A 457, 2207–2226 (2001) ADSMathSciNetMATHCrossRef Bruhns, O.T., Xiao, H., Meyers, A.: Constitutive inequalities for an isotropic elastic strain-energy function based on Hencky’s logarithmic strain tensor. Proc. R. Soc. Lond. A 457, 2207–2226 (2001) ADSMathSciNetMATHCrossRef
17.
go back to reference Chernykh, K.Ph.: Nonlinear Theory of Elasticity in Engineering Analysis. Mashinostroenie, Leningrad (1986) (in Russian) Chernykh, K.Ph.: Nonlinear Theory of Elasticity in Engineering Analysis. Mashinostroenie, Leningrad (1986) (in Russian)
18.
go back to reference Chiskis, A., Parners, R.: Linear stress-strain relations in nonlinear elasticity. Acta Mech. 146, 109–113 (2001) MATHCrossRef Chiskis, A., Parners, R.: Linear stress-strain relations in nonlinear elasticity. Acta Mech. 146, 109–113 (2001) MATHCrossRef
19.
go back to reference Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures, vol. 2. Advanced Topics. Wiley, Chichester (1997) MATH Crisfield, M.A.: Non-linear Finite Element Analysis of Solids and Structures, vol. 2. Advanced Topics. Wiley, Chichester (1997) MATH
20.
go back to reference Curnier, A., Rakotomanana, L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. 39(3–4), 461–538 (1991) MathSciNet Curnier, A., Rakotomanana, L.: Generalized strain and stress measures: critical survey and new results. Eng. Trans. 39(3–4), 461–538 (1991) MathSciNet
21.
22.
go back to reference Curnier, A., Zysset, Ph.: A family of metric strains and conjugate stresses, prolonging usual material laws from small to large transformations. Int. J. Solids Struct. 43, 3057–3086 (2006) MATHCrossRef Curnier, A., Zysset, Ph.: A family of metric strains and conjugate stresses, prolonging usual material laws from small to large transformations. Int. J. Solids Struct. 43, 3057–3086 (2006) MATHCrossRef
23.
go back to reference Darijani, H., Naghdabadi, R., Kargarnovin, M.H.: Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 224, 591–602 (2010) CrossRef Darijani, H., Naghdabadi, R., Kargarnovin, M.H.: Hyperelastic materials modelling using a strain measure consistent with the strain energy postulates. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 224, 591–602 (2010) CrossRef
24.
go back to reference Darijani, H., Naghdabadi, R.: Constitutive modeling of solids at finite deformation using a second-order stress-strain relation. Int. J. Eng. Sci. 48, 223–236 (2010) CrossRef Darijani, H., Naghdabadi, R.: Constitutive modeling of solids at finite deformation using a second-order stress-strain relation. Int. J. Eng. Sci. 48, 223–236 (2010) CrossRef
25.
go back to reference Darijani, H., Naghdabadi, R.: Kinematics and kinetics modeling of thermoelastic continua based on the multiplicative decomposition of the deformation gradient. Int. J. Eng. Sci. 62, 56–69 (2013) MathSciNetMATHCrossRef Darijani, H., Naghdabadi, R.: Kinematics and kinetics modeling of thermoelastic continua based on the multiplicative decomposition of the deformation gradient. Int. J. Eng. Sci. 62, 56–69 (2013) MathSciNetMATHCrossRef
26.
go back to reference Darijani, H.: Conjugated kinetic and kinematic measures for constitutive modeling of the thermoelastic continua. Contin. Mech. Thermodyn. 27, 987–1008 (2015) ADSMathSciNetMATHCrossRef Darijani, H.: Conjugated kinetic and kinematic measures for constitutive modeling of the thermoelastic continua. Contin. Mech. Thermodyn. 27, 987–1008 (2015) ADSMathSciNetMATHCrossRef
27.
go back to reference Dluzewski, P.: Anisotropic hyperelasticity based upon general strain measures. J. Elast. 60, 119–129 (2000) MATHCrossRef Dluzewski, P.: Anisotropic hyperelasticity based upon general strain measures. J. Elast. 60, 119–129 (2000) MATHCrossRef
28.
go back to reference Doyle, T.C., Ericksen, J.L.: Nonlinear elasticity. In: Dryden, H.L., von Karman, Th. (eds.) Advances in Applied Mechanics, vol. 4, pp. 53–115. Academic Press, New York (1956) Doyle, T.C., Ericksen, J.L.: Nonlinear elasticity. In: Dryden, H.L., von Karman, Th. (eds.) Advances in Applied Mechanics, vol. 4, pp. 53–115. Academic Press, New York (1956)
29.
go back to reference Farahani, K., Bahai, H.: Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth–Hill strain measures. Int. J. Eng. Sci. 42, 29–41 (2004) MathSciNetMATHCrossRef Farahani, K., Bahai, H.: Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth–Hill strain measures. Int. J. Eng. Sci. 42, 29–41 (2004) MathSciNetMATHCrossRef
30.
go back to reference Fitzgerald, J.E.: A tensorial Hencky measure of strain and strain rate for finite deformations. J. Appl. Phys. 51(10), 5111–5115 (1980) ADSCrossRef Fitzgerald, J.E.: A tensorial Hencky measure of strain and strain rate for finite deformations. J. Appl. Phys. 51(10), 5111–5115 (1980) ADSCrossRef
31.
go back to reference Fosdick, R.L., Serrin, J.: On the impossibility of linear Cauchy and Piola–Kirchhoff constitutive theories tor stress in solids. J. Elast. 9(1), 83–89 (1979) MATHCrossRef Fosdick, R.L., Serrin, J.: On the impossibility of linear Cauchy and Piola–Kirchhoff constitutive theories tor stress in solids. J. Elast. 9(1), 83–89 (1979) MATHCrossRef
32.
go back to reference Gilchrist, M.D., Murphy, J.G., Rashid, B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47, 268–272 (2012) ADSCrossRef Gilchrist, M.D., Murphy, J.G., Rashid, B.: Generalisations of the strain-energy function of linear elasticity to model biological soft tissue. Int. J. Non-Linear Mech. 47, 268–272 (2012) ADSCrossRef
33.
34.
go back to reference Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Hoboken (2013) Hashiguchi, K., Yamakawa, Y.: Introduction to Finite Strain Theory for Continuum Elasto-Plasticity. Wiley, Hoboken (2013)
35.
36.
go back to reference Hencky, H.: The elastic behaviour of vulcanized rubber. J. Appl. Mech. 1(2), 45–53 (1933) Hencky, H.: The elastic behaviour of vulcanized rubber. J. Appl. Mech. 1(2), 45–53 (1933)
37.
go back to reference Hencky, H.: The elastic behaviour of vulcanized rubber. Rubber Chem. Technol. 6(2), 217–224 (1933) CrossRef Hencky, H.: The elastic behaviour of vulcanized rubber. Rubber Chem. Technol. 6(2), 217–224 (1933) CrossRef
41.
go back to reference Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed.) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978) Hill, R.: Aspects of invariance in solid mechanics. In: Yih, C.-S. (ed.) Advances in Applied Mechanics, vol. 18, pp. 1–75. Academic Press, New York (1978)
43.
go back to reference Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000) MATH Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000) MATH
44.
go back to reference Horgan, C.O., Murphy, J.G.: A generalization of Hencky’s strain-energy density to model the large deformations of slightly compressible solid rubbers. Mech. Mater. 41, 943–950 (2009) CrossRef Horgan, C.O., Murphy, J.G.: A generalization of Hencky’s strain-energy density to model the large deformations of slightly compressible solid rubbers. Mech. Mater. 41, 943–950 (2009) CrossRef
45.
go back to reference Itskov, M.: On the application of the additive decomposition of generalized strain measures in large strain plasticity. Mech. Res. Commun. 25(1), 59–67 (1998) CrossRef Itskov, M.: On the application of the additive decomposition of generalized strain measures in large strain plasticity. Mech. Res. Commun. 25(1), 59–67 (1998) CrossRef
46.
go back to reference Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), 4th edn. Springer, Heidelberg (2015) MATH Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers (with Applications to Continuum Mechanics), 4th edn. Springer, Heidelberg (2015) MATH
47.
go back to reference Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008) MathSciNetMATHCrossRef Korobeynikov, S.N.: Objective tensor rates and applications in formulation of hyperelastic relations. J. Elast. 93, 105–140 (2008) MathSciNetMATHCrossRef
48.
go back to reference Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta Mech. 216(1–4), 301–332 (2011) MATHCrossRef Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum mechanics. Acta Mech. 216(1–4), 301–332 (2011) MATHCrossRef
49.
go back to reference Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229, 1061–1098 (2018) MathSciNetMATHCrossRef Korobeynikov, S.N.: Basis-free expressions for families of objective strain tensors, their rates, and conjugate stress tensors. Acta Mech. 229, 1061–1098 (2018) MathSciNetMATHCrossRef
50.
go back to reference Latorre, M., Montáns, F.J.: Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput. Struct. 122, 13–26 (2013) CrossRef Latorre, M., Montáns, F.J.: Extension of the Sussman–Bathe spline-based hyperelastic model to incompressible transversely isotropic materials. Comput. Struct. 122, 13–26 (2013) CrossRef
51.
52.
go back to reference Latorre, M., Montáns, F.J.: On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int. J. Solids Struct. 51, 1507–1515 (2014) CrossRef Latorre, M., Montáns, F.J.: On the interpretation of the logarithmic strain tensor in an arbitrary system of representation. Int. J. Solids Struct. 51, 1507–1515 (2014) CrossRef
53.
54.
go back to reference Luehr, C.P., Rubin, M.B.: The significance of projection operators in the spectral representation of symmetric second order tensors. Comput. Methods Appl. Mech. Eng. 84, 243–246 (1990) ADSMathSciNetMATHCrossRef Luehr, C.P., Rubin, M.B.: The significance of projection operators in the spectral representation of symmetric second order tensors. Comput. Methods Appl. Mech. Eng. 84, 243–246 (1990) ADSMathSciNetMATHCrossRef
55.
go back to reference Lur’e, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990) Lur’e, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)
56.
go back to reference Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun. Numer. Methods Eng. 17, 337–353 (2001) MATHCrossRef Miehe, C., Lambrecht, M.: Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors. Commun. Numer. Methods Eng. 17, 337–353 (2001) MATHCrossRef
58.
60.
go back to reference Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. 121, 143–234 (2015) MathSciNetMATHCrossRef Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. 121, 143–234 (2015) MathSciNetMATHCrossRef
61.
go back to reference Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984) MATH Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, Chichester (1984) MATH
62.
go back to reference Panov, A.D., Shumaev, V.V.: Using the logarithmic strain measure for solving torsion problems. Mech. Solids 47(1), 71–78 (2012) ADSCrossRef Panov, A.D., Shumaev, V.V.: Using the logarithmic strain measure for solving torsion problems. Mech. Solids 47(1), 71–78 (2012) ADSCrossRef
63.
go back to reference Peyraut, F., Feng, Z.Q., He, Q.C., Labed, N.: Robust numerical analysis of homogeneous and non-homogeneous deformations. Appl. Numer. Math. 59, 1499–1514 (2009) MathSciNetMATHCrossRef Peyraut, F., Feng, Z.Q., He, Q.C., Labed, N.: Robust numerical analysis of homogeneous and non-homogeneous deformations. Appl. Numer. Math. 59, 1499–1514 (2009) MathSciNetMATHCrossRef
64.
go back to reference Pietrzak, G.: Continuum mechanics modelling and augmented Lagrangian formulation of large deformation frictional contact problems. PhD thesis, LMA, DGM, EPFL, Lausanne (1997) Pietrzak, G.: Continuum mechanics modelling and augmented Lagrangian formulation of large deformation frictional contact problems. PhD thesis, LMA, DGM, EPFL, Lausanne (1997)
65.
go back to reference Plešek, J., Kruisova, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Comput. Struct. 84, 1141–1150 (2006) CrossRef Plešek, J., Kruisova, A.: Formulation, validation and numerical procedures for Hencky’s elasticity model. Comput. Struct. 84, 1141–1150 (2006) CrossRef
66.
go back to reference Poživilová, A.: Constitutive modeling of hyperelastic materials using the logarithmic description. PhD thesis, CTU, Prague (2002) Poživilová, A.: Constitutive modeling of hyperelastic materials using the logarithmic description. PhD thesis, CTU, Prague (2002)
67.
go back to reference Sansour, C.: On the dual variable of the logarithmic strain tensor, the dual of Cauchy stress tensor and related issues. Int. J. Solids Struct. 32(38), 9221–9232 (2001) MathSciNetMATHCrossRef Sansour, C.: On the dual variable of the logarithmic strain tensor, the dual of Cauchy stress tensor and related issues. Int. J. Solids Struct. 32(38), 9221–9232 (2001) MathSciNetMATHCrossRef
68.
go back to reference Sendova, T., Walton, J.R.: On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain. Int. J. Non-Linear Mech. 40, 195–213 (2005) ADSMathSciNetMATHCrossRef Sendova, T., Walton, J.R.: On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain. Int. J. Non-Linear Mech. 40, 195–213 (2005) ADSMathSciNetMATHCrossRef
69.
go back to reference Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998) MATH Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998) MATH
70.
go back to reference de Souza Neto, E.A., Peric, D., Owen, D.J.R.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008) CrossRef de Souza Neto, E.A., Peric, D., Owen, D.J.R.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008) CrossRef
71.
go back to reference Sussman, T., Bathe, K.-J.: A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun. Numer. Methods Eng. 25, 53–63 (2009) MathSciNetMATHCrossRef Sussman, T., Bathe, K.-J.: A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression test data. Commun. Numer. Methods Eng. 25, 53–63 (2009) MathSciNetMATHCrossRef
72.
go back to reference Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/1, pp. 226–793. Springer, Berlin (1960) Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/1, pp. 226–793. Springer, Berlin (1960)
73.
go back to reference Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965) Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flügge, S. (ed.) Encyclopedia of Physics, vol. III/3. Springer, Berlin (1965)
74.
go back to reference Volokh, K.Y.: Comments and authors’ reply on “Linear stress-strain relations in nonlinear elasticity” by A. Chiskis and R. Parners, (Acta Mech. 146, 109–113, 2001). Acta Mech. 171, 241–245 (2004) CrossRef Volokh, K.Y.: Comments and authors’ reply on “Linear stress-strain relations in nonlinear elasticity” by A. Chiskis and R. Parners, (Acta Mech. 146, 109–113, 2001). Acta Mech. 171, 241–245 (2004) CrossRef
75.
go back to reference Wang, Z.Q., Wang, Y.: A natural generalization of linear isotropic relations with Seth–Hill strain tensors to transversely isotropic materials at finite strains. Math. Probl. Eng. 2016, 7473046 (2016) MathSciNetMATH Wang, Z.Q., Wang, Y.: A natural generalization of linear isotropic relations with Seth–Hill strain tensors to transversely isotropic materials at finite strains. Math. Probl. Eng. 2016, 7473046 (2016) MathSciNetMATH
76.
go back to reference Xiao, H.: Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill’s strain. Int. J. Solids Struct. 32(22), 3327–3340 (1995) MathSciNetMATHCrossRef Xiao, H.: Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill’s strain. Int. J. Solids Struct. 32(22), 3327–3340 (1995) MathSciNetMATHCrossRef
77.
78.
79.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50(6), 1015–1045 (1998) MathSciNetMATH Xiao, H., Bruhns, O.T., Meyers, A.: Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures. Arch. Mech. 50(6), 1015–1045 (1998) MathSciNetMATH
81.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999) MathSciNetMATHCrossRef Xiao, H., Bruhns, O.T., Meyers, A.: A natural generalization of hypoelasticity and Eulerian rate type formulation of hyperelasticity. J. Elast. 56, 59–93 (1999) MathSciNetMATHCrossRef
82.
go back to reference Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157, 51–60 (2002) MATHCrossRef Xiao, H., Chen, L.S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity. Acta Mech. 157, 51–60 (2002) MATHCrossRef
83.
go back to reference Xiao, H., Chen, L.S.: Hencky’s logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity. Int. J. Solids Struct. 40, 1455–1463 (2003) MATHCrossRef Xiao, H., Chen, L.S.: Hencky’s logarithmic strain and dual stress-strain and strain-stress relations in isotropic finite hyperelasticity. Int. J. Solids Struct. 40, 1455–1463 (2003) MATHCrossRef
84.
go back to reference Xiao, H., Bruhns, O.T., Meyers, A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004) MATHCrossRef Xiao, H., Bruhns, O.T., Meyers, A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 168, 21–33 (2004) MATHCrossRef
85.
go back to reference Xiao, H., He, L.H.: A unified exact analysis for the Poynting effects of cylindrical tubes made of Hill’s class of Hookean compressible elastic materials at finite strain. Int. J. Solids Struct. 44, 718–731 (2007) MATHCrossRef Xiao, H., He, L.H.: A unified exact analysis for the Poynting effects of cylindrical tubes made of Hill’s class of Hookean compressible elastic materials at finite strain. Int. J. Solids Struct. 44, 718–731 (2007) MATHCrossRef
86.
go back to reference Xiao, H., Yue, Z.F., He, L.H.: Hill’s class of compressible elastic materials and finite bending problems: exact solutions in unified form. Int. J. Solids Struct. 48, 1340–1348 (2011) MATHCrossRef Xiao, H., Yue, Z.F., He, L.H.: Hill’s class of compressible elastic materials and finite bending problems: exact solutions in unified form. Int. J. Solids Struct. 48, 1340–1348 (2011) MATHCrossRef
88.
go back to reference Yuan, L., Gu, Z.X., Yin, Z.N., Xiao, H.: New compressible hyper-elastic models for rubberlike materials. Acta Mech. 226, 4059–4072 (2015) MathSciNetMATHCrossRef Yuan, L., Gu, Z.X., Yin, Z.N., Xiao, H.: New compressible hyper-elastic models for rubberlike materials. Acta Mech. 226, 4059–4072 (2015) MathSciNetMATHCrossRef
Metadata
Title
Objective Symmetrically Physical Strain Tensors, Conjugate Stress Tensors, and Hill’s Linear Isotropic Hyperelastic Material Models
Author
S. N. Korobeynikov
Publication date
25-09-2018
Publisher
Springer Netherlands
Published in
Journal of Elasticity / Issue 2/2019
Print ISSN: 0374-3535
Electronic ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-018-9699-9

Other articles of this Issue 2/2019

Journal of Elasticity 2/2019 Go to the issue

Premium Partners