Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2022

16-01-2022 | Research Article-Mechanical Engineering

Oldroyd-B Nanoliquid Flow Through a Triple Stratified Medium Submerged with Gyrotactic Bioconvection and Nonlinear Radiations

Authors: Kotha Gangadhar, Manda Aruna Kumari, M. Venkata Subba Rao, Ali J. Chamkha

Published in: Arabian Journal for Science and Engineering | Issue 7/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, a theoretical analysis is performed to address the features of heat and mass transfer phenomena of two-dimensional viscous fluid flow of Oldroyd-B nanofluid over a vertical stretched sheet which contains gyrotactic microorganisms by considering the mixed convection and inclined magnetic field effects. The induced flow features have been considered by triple stratified medium. Additionally thermal radiation effect is included in the energy equation. To make the present study reasonably worthy, impact of Joule heating and heat sink/source is also considered. By applying the defined similarity transformations physical flow system is reduced to nonlinear system. Thereafter, numerical solution with desired accuracy is obtained with the help of RKF-45 method. Graphical representation is done for the flow controlling parameters involved in this analysis. Main observations of the present study are velocity distribution declined with a relaxation time and thermal stratification parameter and motile density profile is promoted by increasing bioconvection Rayleigh number and buoyancy ratio. These results are reasonable correlated with the previous findings reported in literature. Based on these scientific reports, this work is relevant to bio-inspired nanofluid-enhanced fuel cells and nanomaterials fabrication processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sajid, M.; Abbas, Z.; Javed, T.; Ali, N.: Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet. Can. J. Phys. 88, 635–640 (2010)CrossRef Sajid, M.; Abbas, Z.; Javed, T.; Ali, N.: Boundary layer flow of an Oldroyd-B fluid in the region of a stagnation point over a stretching sheet. Can. J. Phys. 88, 635–640 (2010)CrossRef
2.
go back to reference Shehzad, S.A.; Alsaedi, A.; Hayat, T.; Alhuthali, M.S.: Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption. PLoS One. 8, e78240 (2013)CrossRef Shehzad, S.A.; Alsaedi, A.; Hayat, T.; Alhuthali, M.S.: Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption. PLoS One. 8, e78240 (2013)CrossRef
3.
go back to reference Mahanthesh, B.; Gireesha, B.J.; Shehzad, S.A.; Abbasi, F.M.; Gorla, R.S.R.: Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. Appl. Math. Mech. English Edition. 38, 969–980 (2017)MathSciNetMATHCrossRef Mahanthesh, B.; Gireesha, B.J.; Shehzad, S.A.; Abbasi, F.M.; Gorla, R.S.R.: Nonlinear three-dimensional stretched flow of an Oldroyd-B fluid with convective condition, thermal radiation, and mixed convection. Appl. Math. Mech. English Edition. 38, 969–980 (2017)MathSciNetMATHCrossRef
4.
go back to reference Awasthi, M.K.: Kelvin-Helmholtz instability of viscoelastic liquid-viscous gas interface with heat and mass transfer. Int. J. Thermal Sci. 161, 106710 (2021)CrossRef Awasthi, M.K.: Kelvin-Helmholtz instability of viscoelastic liquid-viscous gas interface with heat and mass transfer. Int. J. Thermal Sci. 161, 106710 (2021)CrossRef
5.
go back to reference Hafeez, A.; Khan, M.: Flow of Oldroyd-B fluid caused by a rotating disk featuring the Cattaneo-Christov theory with heat generation/absorption. Int. Commun. Heat Mass Transfer. 123, 105179 (2021)CrossRef Hafeez, A.; Khan, M.: Flow of Oldroyd-B fluid caused by a rotating disk featuring the Cattaneo-Christov theory with heat generation/absorption. Int. Commun. Heat Mass Transfer. 123, 105179 (2021)CrossRef
6.
go back to reference Haneef, M.; Nawaz, M.; Alharbi, S.O.; Elmasry, Y.: Cattaneo-Christov heat flux theory and thermal enhancement in hybrid nano Oldroyd-B rheological fluid in the presence of mass transfer. Int Commun Heat Mass Transf 126, 105344 (2021)CrossRef Haneef, M.; Nawaz, M.; Alharbi, S.O.; Elmasry, Y.: Cattaneo-Christov heat flux theory and thermal enhancement in hybrid nano Oldroyd-B rheological fluid in the presence of mass transfer. Int Commun Heat Mass Transf 126, 105344 (2021)CrossRef
7.
go back to reference Cheng, L.; Nawaz, M.; Kaneez, H.; Kbiri Alaoui, M.; Selmi, A.; Li, C.; Assilzadeh, H.: Flow and heat transfer analysis of elastoviscoplastic generalized non-Newtonian fluid with hybrid nano structures and dust particles. Int. Commun. Heat Mass Transfer. 126, 105275 (2021)CrossRef Cheng, L.; Nawaz, M.; Kaneez, H.; Kbiri Alaoui, M.; Selmi, A.; Li, C.; Assilzadeh, H.: Flow and heat transfer analysis of elastoviscoplastic generalized non-Newtonian fluid with hybrid nano structures and dust particles. Int. Commun. Heat Mass Transfer. 126, 105275 (2021)CrossRef
8.
go back to reference Chi, X.; Jiang, X.: Finite difference Laguerre-Legendre spectral method for the two-dimensional generalized Oldroyd-B fluid on a semi-infinite domain. Appl. Math. Comput. 402, 126138 (2021)MathSciNetMATH Chi, X.; Jiang, X.: Finite difference Laguerre-Legendre spectral method for the two-dimensional generalized Oldroyd-B fluid on a semi-infinite domain. Appl. Math. Comput. 402, 126138 (2021)MathSciNetMATH
9.
go back to reference Irfan, M.; Aftab, R.; Khan, M.: Thermal performance of Joule heating in Oldroyd-B nanomaterials considering thermal-solutal convective conditions. Chin. J. Phys. 71, 444–457 (2021)MathSciNetCrossRef Irfan, M.; Aftab, R.; Khan, M.: Thermal performance of Joule heating in Oldroyd-B nanomaterials considering thermal-solutal convective conditions. Chin. J. Phys. 71, 444–457 (2021)MathSciNetCrossRef
10.
go back to reference Liang, P.; Wang, S.; Zhao, M.: Numerical study of rotating electroosmotic flow of Oldroyd-B fluid in a micro channel with slip boundary condition. Chin. J. Phys. 65, 459–471 (2020)CrossRef Liang, P.; Wang, S.; Zhao, M.: Numerical study of rotating electroosmotic flow of Oldroyd-B fluid in a micro channel with slip boundary condition. Chin. J. Phys. 65, 459–471 (2020)CrossRef
11.
go back to reference Tlili, I.; Samrat, S.P.; Sandeep, N.; Nabwey, H.A.: Effect of nanoparticles shape on unsteady liquid film flow of MHD Oldroyd-B ferrofluid. Ain Shams Eng. J. 12(1), 935–941 (2021)CrossRef Tlili, I.; Samrat, S.P.; Sandeep, N.; Nabwey, H.A.: Effect of nanoparticles shape on unsteady liquid film flow of MHD Oldroyd-B ferrofluid. Ain Shams Eng. J. 12(1), 935–941 (2021)CrossRef
12.
go back to reference Sadiq Hashmi, M.; Khan, N.; Khan, S.U.; Ijaz Khan, M.; Khan, N.B.; Nazeer, M.; Kadry, S.; Chu, Y.-M.: Dynamics of coupled reacted flow of Oldroyd-B material induced by isothermal/exothermal stretched disks with Joule heating, viscous dissipation and magnetic dipoles. Alex. Eng. J. 60(1), 767–783 (2021)CrossRef Sadiq Hashmi, M.; Khan, N.; Khan, S.U.; Ijaz Khan, M.; Khan, N.B.; Nazeer, M.; Kadry, S.; Chu, Y.-M.: Dynamics of coupled reacted flow of Oldroyd-B material induced by isothermal/exothermal stretched disks with Joule heating, viscous dissipation and magnetic dipoles. Alex. Eng. J. 60(1), 767–783 (2021)CrossRef
13.
go back to reference Chakra borty, T.; Das, K.; Kundu, P.K.: Framing the impact of external magnetic field on bio-convection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions. Alexandria Eng. J. 57(1), 61–71 (2018)CrossRef Chakra borty, T.; Das, K.; Kundu, P.K.: Framing the impact of external magnetic field on bio-convection of a nanofluid flow containing gyrotactic microorganisms with convective boundary conditions. Alexandria Eng. J. 57(1), 61–71 (2018)CrossRef
14.
go back to reference Kuznetsov, A.V.: The onset of nanofluid bio-convection in a suspension containing both nanoparticle and gyrotactic microorganisms. Int. Commun. Heat Mass Transfer 37, 1421–1425 (2010)CrossRef Kuznetsov, A.V.: The onset of nanofluid bio-convection in a suspension containing both nanoparticle and gyrotactic microorganisms. Int. Commun. Heat Mass Transfer 37, 1421–1425 (2010)CrossRef
15.
go back to reference Bhatti, M.M.; Zeeshan, A.; Ellahi, R.: Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc. Res. 110, 32–42 (2017)CrossRef Bhatti, M.M.; Zeeshan, A.; Ellahi, R.: Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc. Res. 110, 32–42 (2017)CrossRef
16.
go back to reference Khashiie, N.S.; Arifin, N.M.; Pop, I.; Nazar, R.: Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chin. J. Phys. 72, 461–474 (2021)MathSciNetCrossRef Khashiie, N.S.; Arifin, N.M.; Pop, I.; Nazar, R.: Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chin. J. Phys. 72, 461–474 (2021)MathSciNetCrossRef
17.
go back to reference Ramzan, M.; Gul, H.; Kadry, S.; Chu, Y.-M.: Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. Int. Commun. Heat Mass Transf. 120, 104994 (2021)CrossRef Ramzan, M.; Gul, H.; Kadry, S.; Chu, Y.-M.: Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with Cattaneo-Christov heat flux and activation energy. Int. Commun. Heat Mass Transf. 120, 104994 (2021)CrossRef
18.
go back to reference Inayatullah, H.T.; Alsaedi, A.; Ahmad, B.: Thermo diffusion and diffusion thermo impacts on bioconvection Walter-B nonmaterial involving gyrotactic microorganisms. Alexandria Eng. J. 60(6), 5537–5545 (2021)CrossRef Inayatullah, H.T.; Alsaedi, A.; Ahmad, B.: Thermo diffusion and diffusion thermo impacts on bioconvection Walter-B nonmaterial involving gyrotactic microorganisms. Alexandria Eng. J. 60(6), 5537–5545 (2021)CrossRef
19.
go back to reference Khan, A.; Saeed, A.; Tassaddiq, A.; Gul, T.; Mukhtar, S.; Kumam, P.; Ali, I.; Kumam, W.: Bio-convective micro polar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction. Case Studies Thermal Eng. 25, 100989 (2021)CrossRef Khan, A.; Saeed, A.; Tassaddiq, A.; Gul, T.; Mukhtar, S.; Kumam, P.; Ali, I.; Kumam, W.: Bio-convective micro polar nanofluid flow over thin moving needle subject to Arrhenius activation energy, viscous dissipation and binary chemical reaction. Case Studies Thermal Eng. 25, 100989 (2021)CrossRef
20.
go back to reference Hussain, S.; Ahmad, F.; Ayed, H.; Malik, M.Y.; Waqas, H.; Mossa Al-Sawalha, M.; Hussain, S.: Combined magnetic and porosity effects on flow of time-dependent tangent hyperbolic fluid with nanoparticles and motile gyrotactic microorganism past a wedge with second-order slip. Case Studies Thermal Eng. 26, 100962 (2021)CrossRef Hussain, S.; Ahmad, F.; Ayed, H.; Malik, M.Y.; Waqas, H.; Mossa Al-Sawalha, M.; Hussain, S.: Combined magnetic and porosity effects on flow of time-dependent tangent hyperbolic fluid with nanoparticles and motile gyrotactic microorganism past a wedge with second-order slip. Case Studies Thermal Eng. 26, 100962 (2021)CrossRef
21.
go back to reference Waqas, H.; Faroo, U.; Muhammad, T.; Hussain, S.; Khan, I.: Thermal effect on bioconvection flow of Sutter by nanofluid between two rotating disks with motile microorganisms. Case Studies Thermal Eng. 26, 101136 (2021)CrossRef Waqas, H.; Faroo, U.; Muhammad, T.; Hussain, S.; Khan, I.: Thermal effect on bioconvection flow of Sutter by nanofluid between two rotating disks with motile microorganisms. Case Studies Thermal Eng. 26, 101136 (2021)CrossRef
22.
go back to reference Ali, B.; Hussain, S.; Nie, Y.; Hussein, A.K.; Habib, D.: Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technol. 377, 439–452 (2021)CrossRef Ali, B.; Hussain, S.; Nie, Y.; Hussein, A.K.; Habib, D.: Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technol. 377, 439–452 (2021)CrossRef
23.
go back to reference Choi S. Enhancing thermal conductivity of fluids with nanoparticles, In: D.A. Siginer, Wang H.P. (Eds.), Development and Applications of Non-Newtonian Flows. ASME FED-231/MD. 1995; 66: 99–105. Choi S. Enhancing thermal conductivity of fluids with nanoparticles, In: D.A. Siginer, Wang H.P. (Eds.), Development and Applications of Non-Newtonian Flows. ASME FED-231/MD. 1995; 66: 99–105.
24.
go back to reference Das, S.K.; Choi, S.U.; Yu, W.; Pradet, T.: Nano fluids: Science and Technology. John Wiley & Sons, New Jersey (2007) Das, S.K.; Choi, S.U.; Yu, W.; Pradet, T.: Nano fluids: Science and Technology. John Wiley & Sons, New Jersey (2007)
25.
go back to reference Elanchezhian, E.; Nirmalkumar, R.; Balamurugan, M.; Mohana, K.; Prabu, K.M.; Viloria, A.: Heat and mass transmission of an Oldroyd-B nanofluid flow through a stratified medium with swimming of motile gyrotactic microorganisms and nanoparticles. J. Therm. Anal. Calorim. 141, 2613–2623 (2020)CrossRef Elanchezhian, E.; Nirmalkumar, R.; Balamurugan, M.; Mohana, K.; Prabu, K.M.; Viloria, A.: Heat and mass transmission of an Oldroyd-B nanofluid flow through a stratified medium with swimming of motile gyrotactic microorganisms and nanoparticles. J. Therm. Anal. Calorim. 141, 2613–2623 (2020)CrossRef
26.
go back to reference Khan, S.U.; Shehzad, S.A.; Nasir, S.: Unsteady flow of chemically reactive Oldroyd-B fluid over oscillatory moving surface with thermo diffusion and heat absorption/generation effects. J. Braz. Soc. Mech. Sci. Eng. 41, 72 (2019)CrossRef Khan, S.U.; Shehzad, S.A.; Nasir, S.: Unsteady flow of chemically reactive Oldroyd-B fluid over oscillatory moving surface with thermo diffusion and heat absorption/generation effects. J. Braz. Soc. Mech. Sci. Eng. 41, 72 (2019)CrossRef
27.
go back to reference Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A.: Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: a numerical study. J. Taiwan Inst. Chem. Eng. 45, 1176–1183 (2014)CrossRef Mushtaq, A.; Mustafa, M.; Hayat, T.; Alsaedi, A.: Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: a numerical study. J. Taiwan Inst. Chem. Eng. 45, 1176–1183 (2014)CrossRef
28.
go back to reference Raptis, A.: Radiation and free convection flow through a porous medium. Int. Commun. Heat Mass Transfer 25, 289–295 (1998)CrossRef Raptis, A.: Radiation and free convection flow through a porous medium. Int. Commun. Heat Mass Transfer 25, 289–295 (1998)CrossRef
29.
go back to reference Brewster, M.Q.: Thermal Radiative Transfer Properties. John Wiley and Sons, New York (1972) Brewster, M.Q.: Thermal Radiative Transfer Properties. John Wiley and Sons, New York (1972)
30.
go back to reference Sparrow, E.M.; Cess, R.D.: Radiation Heat Transfer. Hemisphere, Washington (1978) Sparrow, E.M.; Cess, R.D.: Radiation Heat Transfer. Hemisphere, Washington (1978)
31.
go back to reference Seiyed, E.; Ghasemi, M.; Hatami, D.; Jing, D.D. Ganji.: Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: a numerical study. J. Molecular Liquids 219, 890–896 (2016)CrossRef Seiyed, E.; Ghasemi, M.; Hatami, D.; Jing, D.D. Ganji.: Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: a numerical study. J. Molecular Liquids 219, 890–896 (2016)CrossRef
32.
go back to reference Abel, M.S.; Tawade, J.; Nandeppanavar, M.: MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47, 385–393 (2012)MathSciNetMATHCrossRef Abel, M.S.; Tawade, J.; Nandeppanavar, M.: MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica 47, 385–393 (2012)MathSciNetMATHCrossRef
33.
go back to reference Megahed, M.A.: Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chin. Phys. B. 22, 094701 (2013)CrossRef Megahed, M.A.: Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity. Chin. Phys. B. 22, 094701 (2013)CrossRef
34.
go back to reference Abbasi, F.M.; Mustafa, M.; Shehzad, S.A.; Alhuthali, M.S.; Hayat, T.: Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin. Phys. B. 25(1), 014701 (2016)CrossRef Abbasi, F.M.; Mustafa, M.; Shehzad, S.A.; Alhuthali, M.S.; Hayat, T.: Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin. Phys. B. 25(1), 014701 (2016)CrossRef
35.
go back to reference Khan, W.A.; Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)MATHCrossRef Khan, W.A.; Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53, 2477–2483 (2010)MATHCrossRef
36.
go back to reference Makinde, O.D.; Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011)CrossRef Makinde, O.D.; Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011)CrossRef
37.
go back to reference Afridi, M.I.; Qasim, M.; Wakif, A.; Hussanan, A.: Second law analysis of dissipative nanofluid flow over a curved surface in the presence of Lorentz force: utilization of the Chebyshev-Gauss-Lobatto spectral method. Nano Mater. 9, 195 (2019) Afridi, M.I.; Qasim, M.; Wakif, A.; Hussanan, A.: Second law analysis of dissipative nanofluid flow over a curved surface in the presence of Lorentz force: utilization of the Chebyshev-Gauss-Lobatto spectral method. Nano Mater. 9, 195 (2019)
38.
go back to reference Saha, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)CrossRef Saha, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018)CrossRef
39.
go back to reference Wakif, A.; Animasaun, I.L.; SatyaNarayana, P.V.; Sarojamma, G.: Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin. J. Phys. 68, 293–307 (2020)CrossRef Wakif, A.; Animasaun, I.L.; SatyaNarayana, P.V.; Sarojamma, G.: Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin. J. Phys. 68, 293–307 (2020)CrossRef
40.
go back to reference Acharya, N.: Spectral quasi linearization simulation of radiative nano fluidic transport over a bended surface considering the effects of multiple convective conditions. Euro. J. Mech. B Fluids. 84, 139–154 (2020)MATHCrossRef Acharya, N.: Spectral quasi linearization simulation of radiative nano fluidic transport over a bended surface considering the effects of multiple convective conditions. Euro. J. Mech. B Fluids. 84, 139–154 (2020)MATHCrossRef
41.
go back to reference Gangadhar, K.; Edukondala Nayak, R.; Venkata Subba Rao, M.; Kannan, T.: Nodal/Saddle Stagnation Point Slip Flow of an Aqueous Convectional Magnesium Oxide–Gold Hybrid Nanofluid with Viscous Dissipation. Arabian J. Sci. Eng. 46, 2701–2710 (2021)CrossRef Gangadhar, K.; Edukondala Nayak, R.; Venkata Subba Rao, M.; Kannan, T.: Nodal/Saddle Stagnation Point Slip Flow of an Aqueous Convectional Magnesium Oxide–Gold Hybrid Nanofluid with Viscous Dissipation. Arabian J. Sci. Eng. 46, 2701–2710 (2021)CrossRef
42.
go back to reference Mahdy, A.: Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid. J. Braz. Soc. Mech. Sci. Eng. 38, 67–76 (2016)CrossRef Mahdy, A.: Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical cone in porous media saturated by a nanofluid. J. Braz. Soc. Mech. Sci. Eng. 38, 67–76 (2016)CrossRef
43.
go back to reference Hussain, S.M.; Jamshed, W.A.: Comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method. Int. Commun. Heat Mass Transfer. 129, 105671 (2021)CrossRef Hussain, S.M.; Jamshed, W.A.: Comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method. Int. Commun. Heat Mass Transfer. 129, 105671 (2021)CrossRef
44.
go back to reference Shahzad, F.; Jamshed, W.; Ibrahim, R.W.; Sooppy Nisar, K.; Qureshi, M.A.; Hussain, S.M.; Mohamed Isa, S.S.P.; Eid, M.R.; Abdel, A.H.; Yahia, I.S.: Comparative numerical study of thermal features analysis between Oldroyd-B copper and molybdenum disulfide nanoparticles in engine-oil-based nanofluids flow. Coatings 11, 1196 (2021)CrossRef Shahzad, F.; Jamshed, W.; Ibrahim, R.W.; Sooppy Nisar, K.; Qureshi, M.A.; Hussain, S.M.; Mohamed Isa, S.S.P.; Eid, M.R.; Abdel, A.H.; Yahia, I.S.: Comparative numerical study of thermal features analysis between Oldroyd-B copper and molybdenum disulfide nanoparticles in engine-oil-based nanofluids flow. Coatings 11, 1196 (2021)CrossRef
45.
go back to reference Sharma, R.; Hussain, S.M.; Raju, C.S.K.; Seth, G.S.; Chamkha, A.J.: Study of graphene Maxwell nanofluid flow past a linearly stretched sheet: a numerical and statistical approach. Chin. J. Phys. 68, 671–683 (2020)MathSciNetCrossRef Sharma, R.; Hussain, S.M.; Raju, C.S.K.; Seth, G.S.; Chamkha, A.J.: Study of graphene Maxwell nanofluid flow past a linearly stretched sheet: a numerical and statistical approach. Chin. J. Phys. 68, 671–683 (2020)MathSciNetCrossRef
46.
go back to reference Hussain, S.M.; Sharma, R.; Mishra, M.R.; Alrashidy, S.S.: Hydromagnetic dissipative and radiative graphene Maxwell nanofluid flow pasta stretched sheet-numerical and statistical analysis. Mathematics 8, 1929 (2020)CrossRef Hussain, S.M.; Sharma, R.; Mishra, M.R.; Alrashidy, S.S.: Hydromagnetic dissipative and radiative graphene Maxwell nanofluid flow pasta stretched sheet-numerical and statistical analysis. Mathematics 8, 1929 (2020)CrossRef
47.
go back to reference Mishra, M.R.; Hussain, S.M.; Makinde, O.D.; Seth, G.S.: Stability analysis and multiple solutions of hydromagnetic dissipative flow over a stretching/shrinking sheet. Bul. Chem. Commun. 52(2), 259–271 (2020) Mishra, M.R.; Hussain, S.M.; Makinde, O.D.; Seth, G.S.: Stability analysis and multiple solutions of hydromagnetic dissipative flow over a stretching/shrinking sheet. Bul. Chem. Commun. 52(2), 259–271 (2020)
48.
go back to reference Hussain, S.M.; Sharma, R.; Seth, G.S.; Mishra, M.R.: Thermal radiation impact on boundary layer dissipative flow of magneto-nanofluid over an exponentially stretching sheet. Int. J. Heat Technol. 36(4), 1163–1173 (2018)CrossRef Hussain, S.M.; Sharma, R.; Seth, G.S.; Mishra, M.R.: Thermal radiation impact on boundary layer dissipative flow of magneto-nanofluid over an exponentially stretching sheet. Int. J. Heat Technol. 36(4), 1163–1173 (2018)CrossRef
49.
go back to reference Hussain, S.M.; Jain, J.; Seth, G.S.; Rashidi, M.M.: Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system. J. Magn. Magn. Mater. 422, 112–123 (2017)CrossRef Hussain, S.M.; Jain, J.; Seth, G.S.; Rashidi, M.M.: Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system. J. Magn. Magn. Mater. 422, 112–123 (2017)CrossRef
50.
go back to reference Hussain S.M.; Joshi H.J.; Seth G.S.: Radiation Effect on MHD convective flow of nanofluids over an exponentially accelerated moving ramped temperature plate. In: Singh M., Kushrah B., Seth GS, Prakash J. (eds.) Applications of Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2018. Hussain S.M.; Joshi H.J.; Seth G.S.: Radiation Effect on MHD convective flow of nanofluids over an exponentially accelerated moving ramped temperature plate. In: Singh M., Kushrah B., Seth GS, Prakash J. (eds.) Applications of Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore, 2018.
51.
go back to reference Shajid, T.; Jamshed, W.; Shahzad, F.; Eid, M.R.; Alshehri, H.M.; Goodarzi, M.; Akgul, E.K.; Sooppy, N.K.: Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink. Physica Scripta. 96, 104010 (2021)CrossRef Shajid, T.; Jamshed, W.; Shahzad, F.; Eid, M.R.; Alshehri, H.M.; Goodarzi, M.; Akgul, E.K.; Sooppy, N.K.: Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink. Physica Scripta. 96, 104010 (2021)CrossRef
52.
go back to reference Jamshed, W.; Suriya Uma Devi, S.; Goodarzi, M.; Prakash, M.; Sooppynisar, K.; Zakarya, M.; Abdel-Aty, A.H.: Evaluating the unsteady casson nanofluid over a stretching sheet with solar thermal radiation: an optimal case study. Case Studies Thermal Eng. 26, 101160 (2021)CrossRef Jamshed, W.; Suriya Uma Devi, S.; Goodarzi, M.; Prakash, M.; Sooppynisar, K.; Zakarya, M.; Abdel-Aty, A.H.: Evaluating the unsteady casson nanofluid over a stretching sheet with solar thermal radiation: an optimal case study. Case Studies Thermal Eng. 26, 101160 (2021)CrossRef
53.
go back to reference Waqas, H.; Farooq, U.; Kahn, S.A.; Alshehri, H.M.; Goodarzi, M.: Numerical analysis of dual variable of conductivity in bioconvection flow of Carreau-Yasuda nanofluid containing gyrotactic motile microorganisms over a porous medium. J. Therm. Anal. Calorim. 145, 2033–2044 (2021)CrossRef Waqas, H.; Farooq, U.; Kahn, S.A.; Alshehri, H.M.; Goodarzi, M.: Numerical analysis of dual variable of conductivity in bioconvection flow of Carreau-Yasuda nanofluid containing gyrotactic motile microorganisms over a porous medium. J. Therm. Anal. Calorim. 145, 2033–2044 (2021)CrossRef
54.
go back to reference Imran, M.; Farooq, U.; Waqas, H.; Anqi, A.E.; Safaei, M.R.: Numerical performance of thermal conductivity in Bioconvection flow of cross nanofluid containing swimming microorganisms over a cylinder with melting phenomenon. Case Studies Thermal Eng. 26, 101181 (2021)CrossRef Imran, M.; Farooq, U.; Waqas, H.; Anqi, A.E.; Safaei, M.R.: Numerical performance of thermal conductivity in Bioconvection flow of cross nanofluid containing swimming microorganisms over a cylinder with melting phenomenon. Case Studies Thermal Eng. 26, 101181 (2021)CrossRef
55.
go back to reference Maleki, H.; Alsarraf, J.; Moghanizadeh, A.; Hajabdollahi, H.; Safaei, M.R.: Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions. J. Central South Univ. 26, 1099–1115 (2019)CrossRef Maleki, H.; Alsarraf, J.; Moghanizadeh, A.; Hajabdollahi, H.; Safaei, M.R.: Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions. J. Central South Univ. 26, 1099–1115 (2019)CrossRef
56.
go back to reference Maleki, H.; Safaei, M.R.; Togun, H.; Dahari, M.: Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J. Therm. Anal. Calorim. 135, 1643–1654 (2019)CrossRef Maleki, H.; Safaei, M.R.; Togun, H.; Dahari, M.: Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J. Therm. Anal. Calorim. 135, 1643–1654 (2019)CrossRef
57.
go back to reference Maleki, H.; Safaei, M.R.; Alrashed, A.A.A.A.; Kasaeian, A.: Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J. Therm. Anal. Calorim. 135, 1655–1666 (2019)CrossRef Maleki, H.; Safaei, M.R.; Alrashed, A.A.A.A.; Kasaeian, A.: Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J. Therm. Anal. Calorim. 135, 1655–1666 (2019)CrossRef
Metadata
Title
Oldroyd-B Nanoliquid Flow Through a Triple Stratified Medium Submerged with Gyrotactic Bioconvection and Nonlinear Radiations
Authors
Kotha Gangadhar
Manda Aruna Kumari
M. Venkata Subba Rao
Ali J. Chamkha
Publication date
16-01-2022
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2022
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-021-06412-x

Other articles of this Issue 7/2022

Arabian Journal for Science and Engineering 7/2022 Go to the issue

Premium Partners