Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2021

Open Access 01-12-2021 | Research

On a class of Hilbert-type inequalities in the whole plane related to exponent function

Author: Minghui You

Published in: Journal of Inequalities and Applications | Issue 1/2021

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

By introducing a kernel involving an exponent function with multiple parameters, we establish a new Hilbert-type inequality and its equivalent Hardy form. We also prove that the constant factors of the obtained inequalities are the best possible. Furthermore, by introducing the Bernoulli number, Euler number, and the partial fraction expansion of cotangent function and cosecant function, we get some special and interesting cases of the newly obtained inequality.

1 Introduction

Suppose that \(f(x)\) and \(\mu (x)\) (>0) are two measurable functions defined on a measurable set Ω, and \(p>1\). Define
$$\begin{aligned} L^{p}_{\mu }(\Omega ):= \biggl\{ f: \Vert f \Vert _{p,\mu }:= \biggl({ \int _{\Omega } \mu (x) \bigl\vert f(x) \bigr\vert ^{p}\,\mathrm{d}m} \biggr)^{\frac{1}{p}}< \infty \biggr\} . \end{aligned}$$
(1.1)
Specially, for \(\mu (x)=1\), we have the abbreviated forms: \(\|f\|_{p,\mu }:=\|f\|_{p}\) and \(L^{p}_{\mu }(\Omega ):= L^{p}(\Omega )\).
Consider two real-valued functions \(f, g\geq 0\) and \(f, g\in L^{p}(\mathbb{R}_{+})\). Suppose that \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1\). Then we have the following two classical Hilbert-type inequalities [1]:
$$\begin{aligned}& \int _{\mathbb{R}_{+}} \int _{\mathbb{R}_{+}} \frac{f(x)g(y)}{x+y}{ \,\mathrm{d} x\,\mathrm{d} y} < \frac{\pi }{\sin \frac{\pi }{p}} \Vert f \Vert _{p} \Vert g \Vert _{q}, \end{aligned}$$
(1.2)
$$\begin{aligned}& \int _{\mathbb{R}_{+}} \int _{\mathbb{R}_{+}} \frac{f(x)g(y)}{\max \{x,y\}}{\,\mathrm{d} x\,\mathrm{d} y} < pq \Vert f \Vert _{p} \Vert g \Vert _{q}, \end{aligned}$$
(1.3)
where the constant factors \(\frac{\pi }{\sin \frac{\pi }{p}}\) and pq in (1.2) and (1.3) are the best possible.
In the past 100 years, especially after the 1990s, by the introduction of several parameters and special functions such as β-function and Γ-function, some classical Hilbert-type integral inequalities like (1.2) and (1.3) as well as their discrete forms were extended to more general forms (see [212]). The inequality below is a typical extension of (1.2) which was established by Yang [13] in 2004:
$$ \int _{0}^{\infty } \int _{0}^{\infty } \frac{f(x)g(y)}{x^{\beta }+y^{\beta }}\,\mathrm{d} x \,\mathrm{d} y< \frac{\pi }{\beta \sin {\frac{\pi }{r}}} \Vert f \Vert _{p,\mu } \Vert g \Vert _{q,\nu }, $$
(1.4)
where \(\rho >0\), \(\mu (x)=x^{p(1-\frac{\beta }{r})-1}\), \(\nu (x)=x^{q(1-\frac{\beta }{s})-1}\), \(\frac{1}{r}+\frac{1}{s}=1\), and the constant factor is the best possible.
In recent years, by constructing new kernel functions and studying their discrete form, half-discrete form, reverse form, multi-dimensional extension and coefficient refinement, researchers have established a large number of new Hilbert-type inequalities (see [1425]). It should be noted that the establishment of these inequalities fully demonstrates the techniques of modern analysis and proves to be critical in the development of modern analysis [26].
In these numerous publications related to the Hilbert inequality, we will present some results with the kernels involving exponent function, and the motivation of this work is precisely from these results. The first result presented below was established by Yang [27] in 2012, that is,
$$ \int _{\mathbb{R}_{+}} \int _{\mathbb{R}_{+}}e^{-\frac{ax}{y}}f(x)g(y){ \,\mathrm{d} x \, \mathrm{d} y}< a^{-\beta }\Gamma (\beta ) \Vert f \Vert _{2, \mu } \Vert g \Vert _{2,\mu }, $$
(1.5)
where \(a>0\), \(\beta >0\), \(\mu (x)=x^{-2\beta +1}\) and \(\nu (y)=y^{2\beta +1}\).
In addition, Liu [28] established an inequality with the kernel involving hyperbolic secant function in 2013, and Yang [29] established an inequality with the kernel involving hyperbolic cosecant function in 2014. The two inequalities can be written as follows:
$$\begin{aligned}& \int _{\mathbb{R}_{+}} \int _{\mathbb{R}_{+}}\operatorname{sech}(xy) f(x)g(y){ \,\mathrm{d} x \, \mathrm{d} y}< 2c_{0} \Vert f \Vert _{2,\mu } \Vert g \Vert _{2, \mu }, \end{aligned}$$
(1.6)
$$\begin{aligned}& \int _{\mathbb{R}_{+}} \int _{\mathbb{R}_{+}}\operatorname{csch} (xy)f(x)g(y) {\,\mathrm{d} x \, \mathrm{d} y}< \frac{\pi ^{2}}{4} \Vert f \Vert _{2, \mu } \Vert g \Vert _{2, \mu } , \end{aligned}$$
(1.7)
where \(\operatorname{sech} (t)=\frac{2}{e^{t}+e^{-t}}\), \(\operatorname{csch} (t)=\frac{2}{e^{t}-e^{-t}}\), \(\mu (x)=x^{-3}\) and \(c_{0}=\sum_{k=0}^{\infty }\frac{(-1)^{k}}{(2k+1)^{2}}=0.91596559^{+}\), which is the Catalan constant.
In this work, the integral interval of inequality (1.6) and (1.7) will be extended to the whole plane, and the following new inequalities will be established:
$$\begin{aligned}& \int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{sech}(xy)f(x)g(y) { \,\mathrm{d} x \, \mathrm{d} y} < \frac{E_{n}}{4^{n}}\pi ^{2n+1} \Vert f \Vert _{2,\mu } \Vert g \Vert _{2, \mu }, \end{aligned}$$
(1.8)
$$\begin{aligned}& \int _{\mathbb{R}} \int _{\mathbb{R}} \bigl\vert \operatorname{csch}(xy) \bigr\vert f(x)g(y) { \,\mathrm{d} x\,\mathrm{d} y} < \frac{B_{n}}{n} \bigl(2^{2n}-1 \bigr)\pi ^{2n} \Vert f \Vert _{2,\nu } \Vert g \Vert _{2, \nu }, \end{aligned}$$
(1.9)
where \(\mu (x)=| x| ^{-4n-1}\), \(\nu (x)=| x| ^{-4n+1}\), \(E_{n}\) is an Euler number [30, 31] and \(B_{n}\) is a Bernoulli number [30, 31].
Furthermore, we also present some interesting inequalities involving other hyperbolic functions in this paper. More generally, a new kernel function including both the homogeneous case and the non-homogeneous case is constructed, and a Hilbert-type inequality involving this new kernel is established. It will be shown that the newly obtained inequality is a unified extension of (1.8), (1.9) and some other special Hilbert-type inequalities.

2 Some lemmas

Lemma 2.1
Let \(r,s>0\), \(r+s=1\), \(\varphi (x)=\cot {x}\). Then
$$\begin{aligned}& \varphi ^{(2n-1)}(r\pi )=-\frac{(2n-1)!}{\pi ^{2n}}\sum _{k=0}^{\infty } \biggl\{ \frac{1}{(k+r)^{2n}}+ \frac{1}{(k+s)^{2n}} \biggr\} ,\quad n\in {\mathbb{N}}^{+}; \end{aligned}$$
(2.1)
$$\begin{aligned}& \varphi ^{(2n)}(r\pi )=\frac{(2n)!}{\pi ^{2n+1}}\sum _{k=0}^{\infty } \biggl\{ \frac{1}{(k+r)^{2n+1}}-\frac{1}{(k+s)^{2n+1}} \biggr\} ,\quad n \in {\mathbb{N}}. \end{aligned}$$
(2.2)
Proof
Consider the rational fraction expansion of \(\varphi (x)=\cot x\) [30]:
$$ \varphi (x)=\frac{1}{x}+\sum_{k=1}^{\infty } \biggl\{ \frac{1}{x+k\pi }+ \frac{1}{x-k\pi } \biggr\} , $$
and find the \((2n-1)\)th derivative of \(\varphi (x)\), then we obtain
$$ \varphi ^{(2n-1)}(x)=-(2n-1)! \Biggl\{ \sum _{k=0}^{\infty }\frac{1}{(x+k\pi )^{2n}}+\sum _{k=1}^{\infty }\frac{1}{(x-k\pi )^{2n}} \Biggr\} . $$
(2.3)
Set \(x=r\pi \) in (2.3). Since \(r+s=1\), it follows that
$$\begin{aligned} \varphi ^{(2n-1)}(r\pi )&=-\frac{(2n-1)!}{\pi ^{2n}} \Biggl\{ \sum _{k=0}^{\infty }\frac{1}{(k+r)^{2n}}+\sum _{k=1}^{\infty }\frac{1}{(k-r)^{2n}} \Biggr\} \\ &=-\frac{(2n-1)!}{\pi ^{2n}}\sum_{k=0}^{\infty } \biggl\{ \frac{1}{(k+r)^{2n}}+ \frac{1}{(k+s)^{2n}} \biggr\} . \end{aligned}$$
Therefore, (2.1) is proved, and similar computation yields (2.2). □
Furthermore, by considering the following rational fraction expansion of \(\psi (x)=\csc x\) [30]:
$$ \psi (x)=\frac{1}{x}+\sum_{k=1}^{\infty }(-1)^{k} \biggl( \frac{1}{x+k\pi }+\frac{1}{x-k\pi } \biggr), $$
we can obtain Lemma 2.2.
Lemma 2.2
Let \(r,s>0\), \(r+s=1\) and \(\psi (x)=\csc {x}\). Then
$$\begin{aligned}& \psi ^{(2n-1)}(r\pi )=-\frac{(2n-1)!}{\pi ^{2n}}\sum _{k=0}^{\infty }(-1)^{k} \biggl\{ \frac{1}{(k+r)^{2n}}-\frac{1}{(k+s)^{2n}} \biggr\} ,\quad n \in { \mathbb{N}}^{+}; \end{aligned}$$
(2.4)
$$\begin{aligned}& \psi ^{(2n)}(r\pi )=\frac{(2n)!}{\pi ^{2n+1}}\sum _{k=0}^{\infty }(-1)^{k} \biggl\{ \frac{1}{(k+r)^{2n+1}}+\frac{1}{(k+s)^{2n+1}} \biggr\} ,\quad n\in {\mathbb{N}}. \end{aligned}$$
(2.5)
Remark 2.3
Let \(r=\frac{1}{2}\) in (2.1). For \(n\in {\mathbb{N}}^{+}\), we have
$$ \varphi ^{(2n-1)} \biggl(\frac{\pi }{2} \biggr)=- \frac{2^{2n+1}}{\pi ^{2n}}(2n-1)!\sum_{k=0}^{\infty} \frac{1}{(2k+1)^{2n}}. $$
(2.6)
By using the equality [30, 31] \(\sum_{k=1}^{\infty }\frac{1}{k^{2n}}=\frac{(2\pi )^{2n}}{2(2n)!}B_{n} \), where \(B_{n}\) is a Bernoulli number, we have
$$ \sum_{k=0}^{\infty } \frac{1}{(2k+1)^{2n}}=\sum_{k=1}^{\infty } \frac{1}{k^{2n}}-\sum_{k=1}^{\infty } \frac{1}{(2k)^{2n}}= \frac{2^{2n}-1}{2(2n)!}B_{n}\pi ^{2n}. $$
(2.7)
Applying (2.7) to (2.6), we obtain
$$ \varphi ^{(2n-1)} \biggl(\frac{\pi }{2} \biggr)=-\frac{B_{n}}{n}2^{2n-1} \bigl(2^{2n}-1 \bigr). $$
(2.8)
In addition, letting \(r=\frac{1}{4}\) in (2.1), we can also obtain
$$ \varphi ^{(2n-1)} \biggl(\frac{\pi }{4} \biggr)=-\frac{B_{n}}{n}4^{2n-1} \bigl(2^{2n}-1 \bigr). $$
(2.9)
Furthermore, let \(r=\frac{1}{4}\) in (2.2) and \(r=\frac{1}{2}\) in (2.5). In view of [30] \(\sum_{k=0}^{\infty }\frac{(-1)^{k}}{(2k+1)^{2n+1}}= \frac{\pi ^{2n+1}}{2^{2n+2}(2n)!}E_{n} \), where \(E_{n}\) is an Euler number, we obtain
$$ E_{n}=\frac{1}{4^{n}}\varphi ^{(2n)} \biggl(\frac{\pi }{4} \biggr)= \psi ^{(2n)} \biggl(\frac{\pi }{2} \biggr). $$
(2.10)
Lemma 2.4
Let \(\eta _{1},\eta _{2}, \delta \in \{1,-1\}\), \(a>c\geq d>b>0 \) and \(c\neq d\) for \(\eta _{2}=-1\). Let β be such that \(\beta \geq 1 \), and \(\beta \neq 1\) for \(\eta _{1}=-1\), \(\eta _{2}=1\). Define
$$ K(x,y):= \frac{ \vert c^{xy^{\delta }}+\eta _{2}d^{xy^{\delta }} \vert }{ \vert a^{xy^{\delta }}+\eta _{1}b^{xy^{\delta }} \vert } $$
(2.11)
and
$$\begin{aligned} C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) :={}&\sum _{k=0}^{\infty } \biggl( \frac{(-\eta _{1})^{k}}{(k\ln \frac{a}{b}+\ln \frac{a}{c})^{\beta }}+ \frac{\eta _{2}(-\eta _{1})^{k}}{(k\ln \frac{a}{b}+\ln \frac{a}{d})^{\beta }} \biggr) \\ & {}+\sum_{k=0}^{\infty } \biggl( \frac{(-\eta _{1})^{k}}{(k\ln \frac{a}{b}+\ln \frac{d}{b})^{\beta }}+ \frac{\eta _{2}(-\eta _{1})^{k}}{(k\ln \frac{a}{b}+\ln \frac{c}{b})^{\beta }} \biggr). \end{aligned}$$
(2.12)
Then
$$ \int _{\mathbb{R}} K(t,1) \vert t \vert ^{\beta -1}\, \mathrm{d} t= \Gamma ( \beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ), $$
(2.13)
where \(\Gamma (\beta )=\int _{\mathbb{R}_{+}}x^{\beta -1}e^{-x}\,\mathrm{d} x\) (\(\beta >0\)) is the second type of Euler integral (Γ-function) [30, 31], and \(\Gamma (\beta )=(\beta -1)!\) for \(\beta \in {\mathbb{N}}^{+}\).
Proof
$$\begin{aligned} & \int _{\mathbb{R}} K(t,1) \vert t \vert ^{\beta -1}\, \mathrm{d} t \\ &\quad = \int _{\mathbb{R}_{+}} K(t,1) \vert t \vert ^{\beta -1}\, \mathrm{d} t+ \int _{\mathbb{R}_{-}} K(t,1) \vert t \vert ^{\beta -1} \, \mathrm{d} t:=I_{1}+I_{2}. \end{aligned}$$
(2.14)
Observing that \(a>b>0 \) and \(\eta _{1}\in \{1,-1\}\), we obtain
$$ \frac{1}{a^{t}+\eta _{1}b^{t}} = \frac{a^{-t}}{1+\eta _{1} {(a^{-1}b)}^{t}}=\sum _{k=0}^{\infty }(-\eta _{1})^{k} \biggl\{ \biggl(\frac{b}{a} \biggr)^{k} \frac{1}{a} \biggr\} ^{t}. $$
(2.15)
Hence
$$\begin{aligned} I_{1}&= \int _{\mathbb{R}_{+}} K(t,1) \vert t \vert ^{\beta -1}{ \, \mathrm{d} t} \\ &= \sum_{k=0}^{\infty }(-\eta _{1})^{k} \int _{ \mathbb{R}_{+}} \biggl\{ \biggl(\frac{b}{a} \biggr)^{k}\frac{c}{a} \biggr\} ^{t} t^{\beta -1}{\,\mathrm{d} t}+\sum_{k=0}^{\infty }(-\eta _{1})^{k} \eta _{2} \int _{\mathbb{R}_{+}} \biggl\{ \biggl(\frac{b}{a} \biggr)^{k}\frac{d}{a} \biggr\} ^{t}t^{ \beta -1} {\,\mathrm{d} t} \\ &:=\sum_{k=0}^{\infty } \bigl\{ (- \eta _{1})^{k}I_{11}+(-\eta _{1})^{k} \eta _{2}I_{12} \bigr\} . \end{aligned}$$
(2.16)
Setting \(t=\frac{u}{k\ln \frac{a}{b}+\ln \frac{a}{c}}\), we have
$$ I_{11}= \frac{1}{(k\ln \frac{a}{b}+\ln \frac{a}{c})^{\beta }} \int _{ \mathbb{R}_{+}}e^{-u}u^{\beta -1} {\,\mathrm{d} u}= \frac{\Gamma (\beta )}{(k\ln \frac{a}{b}+\ln \frac{a}{c})^{\beta }}. $$
(2.17)
Similarly, we can obtain
$$ I_{12}= \frac{1}{(k\ln \frac{a}{b}+\ln \frac{a}{d})^{\beta }} \int _{ \mathbb{R}_{+}} e^{-u}u^{\beta -1} { \, \mathrm{d} u}= \frac{\Gamma (\beta )}{(k\ln \frac{a}{b}+\ln \frac{a}{d})^{\beta }}. $$
(2.18)
Applying (2.17) and (2.18) to (2.16), we obtain
$$ I_{1}=\Gamma (\beta )\sum _{k=0}^{\infty } \biggl( \frac{(-\eta _{1})^{k}}{(k\ln \frac{a}{b}+\ln \frac{a}{c})^{\beta }}+ \frac{\eta _{2}(-\eta _{1})^{k}}{(k\ln \frac{a}{b}+\ln \frac{a}{d})^{\beta }} \biggr). $$
(2.19)
Similarly, we can obtain
$$\begin{aligned} I_{2}&= \int _{\mathbb{R}_{-}} K(t,1) \vert t \vert ^{\beta -1}{ \, \mathrm{d} t} = \int _{\mathbb{R}_{+}} K(-t,1) t^{\beta -1}{ \,\mathrm{d} t} \\ &=\Gamma (\beta )\sum_{k=0}^{\infty } \biggl( \frac{(-\eta _{1})^{k}}{(k\ln \frac{a}{b}+\ln \frac{d}{b})^{\beta }}+ \frac{\eta _{2}(-\eta _{1})^{k}}{(k\ln \frac{a}{b}+\ln \frac{c}{b})^{\beta }} \biggr). \end{aligned}$$
(2.20)
Plugging (2.19) and (2.20) into (2.14), and using (2.12), we have (2.13). □
Lemma 2.5
Let \(\eta _{1},\eta _{2}, \delta \in \{1,-1\}\), \(a>c\geq d>b>0\) and \(c\neq d\) for \(\eta _{2}=-1\). Let β be such that \(\beta \geq 1 \), and \(\beta \neq 1\) for \(\eta _{1}=-1\), \(\eta _{2}=1\). \(C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) \) is defined by Lemma 2.4. Suppose \(D_{\delta }=\{y: | y| ^{\delta }<1\}\), and, for arbitrary natural number n which is large enough, set
$$\begin{aligned}& f_{n}(x)= \textstyle\begin{cases} 0, &x\in [-1, 1], \\ \vert x \vert ^{{\beta -1}-\frac{2}{np}}, &x\in \mathbb{R}\setminus [-1, 1], \end{cases}\displaystyle \\& g_{n}(y)= \textstyle\begin{cases} \vert y \vert ^{{\delta \beta -1}+\frac{2\delta }{nq}}, &y\in D_{\delta }, \\ 0, &y\in \mathbb{R}\setminus D_{\delta }. \end{cases}\displaystyle \end{aligned}$$
Then
$$ \frac{1}{n} \int _{\mathbb{R}} \int _{\mathbb{R}}K(x, y)f_{n}(x)g_{n}(y){ \,\mathrm{d} x\,\mathrm{d} y}=C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )+o(1). $$
(2.21)
Proof
Setting \(D_{\delta }^{+}=\{y: y>0, y\in D_{\delta }\}\), \(D_{\delta }^{-}=\{y: y<0, y\in D_{\delta }\}\), we get
$$\begin{aligned} & \int _{\mathbb{R}} \int _{\mathbb{R}}K(x, y)f_{n}(x)g_{n}(y){ \,\mathrm{d} x\,\mathrm{d} y} \\ &\quad = \int _{1}^{\infty }x^{{\beta -1}-\frac{2}{np}} \int _{D_{\delta }^{+}} K(x, y)y^{\delta \beta -1+\frac{2\delta }{nq}}{\,\mathrm{d} y \, \mathrm{d} x} \\ &\qquad {}+ \int _{1}^{\infty }x^{{\beta -1}-\frac{2}{np}} \int _{D_{\delta }^{-}} K(x, y) \vert y \vert ^{\delta \beta -1+\frac{2\delta }{nq}}{\, \mathrm{d} y \,\mathrm{d} x} \\ &\qquad {}+ \int _{-\infty }^{-1} \vert x \vert ^{{\beta -1}-\frac{2}{np}} \int _{D_{ \delta }^{+}} K(x, y)y^{\delta \beta -1+\frac{2\delta }{nq}}{ \,\mathrm{d} y \, \mathrm{d} x} \\ &\qquad {}+ \int _{-\infty }^{-1} \vert x \vert ^{{\beta -1}-\frac{2}{np}} \int _{D_{ \delta }^{-}} K(x, y) \vert y \vert ^{\delta \beta -1+\frac{2\delta }{nq}}{ \, \mathrm{d} y \,\mathrm{d} x} \\ &\quad =J_{1}+J_{2}+J_{3}+J_{4}. \end{aligned}$$
(2.22)
Setting \(xy^{\delta }=t\), and using Fubini’s theorem, where δ is equal to 1 or −1, we can get
$$\begin{aligned} J_{1}&=J_{4}= \int _{1}^{\infty }x^{-1-\frac{2}{n}} \biggl( \int _{0}^{x} K(t, 1)t^{\beta -1+\frac{2}{nq}}{ \, \mathrm{d} t} \biggr){ \,\mathrm{d} x} \\ &= \int _{1}^{\infty }x^{-1-\frac{2}{n}} \int _{0}^{1} K(t, 1)t^{ \beta -1+\frac{2}{nq}}{ \, \mathrm{d} t} {\,\mathrm{d} x} \\ &\quad {}+ \int _{1}^{\infty }x^{-1-\frac{2}{n}} \int _{1}^{x} K(t, 1)t^{\beta -1+ \frac{2}{nq}}{ \, \mathrm{d} t} {\,\mathrm{d} x} \\ &= \frac{n}{2} \int _{0}^{1} K(t, 1)t^{\beta -1+\frac{2}{nq}}{ \, \mathrm{d} t} + \int _{1}^{\infty }K(t, 1)t^{\beta -1+ \frac{2}{nq}} \int _{t}^{\infty }x^{-1-\frac{2}{n}}{\,\mathrm{d} x} { \,\mathrm{d} t} \\ &= \frac{n}{2} \int _{0}^{1} K(t, 1)t^{\beta -1+\frac{2}{nq}}{ \, \mathrm{d} t} +\frac{n}{2} \int _{1}^{\infty }K(t, 1)t^{ \beta -1-\frac{2}{np}}{ \, \mathrm{d} t}. \end{aligned}$$
(2.23)
Similarly, setting \(xy^{\delta }=-t\), we can also obtain
$$\begin{aligned} J_{2}&=J_{3}= \int _{1}^{\infty }x^{-1-\frac{2}{n}} \int _{0}^{x} K(-t, 1)t^{ \beta -1+\frac{2}{nq}}{ \, \mathrm{d} t} {\,\mathrm{d} x} \\ &= \frac{n}{2} \int _{0}^{1} K(-t, 1)t^{\beta -1+\frac{2}{nq}}{ \, \mathrm{d} t} +\frac{n}{2} \int _{1}^{\infty }K(-t, 1)t^{ \beta -1-\frac{2}{np}}{ \, \mathrm{d} t}. \end{aligned}$$
(2.24)
Applying (2.23) and (2.24) to (2.22), we have
$$\begin{aligned} & \frac{1}{n} \int _{\mathbb{R}} \int _{\mathbb{R}}K(x, y)f_{n}(x)g_{n}(y){ \,\mathrm{d} x\,\mathrm{d} y} \\ &\quad = \int _{0}^{1} K(t, 1)t^{\beta -1+\frac{2}{nq}}{ \, \mathrm{d} t} + \int _{1}^{\infty }K(t, 1)t^{\beta -1-\frac{2}{np}}{ \, \mathrm{d} t} \\ &\qquad {}+ \int _{0}^{1} K(-t, 1)t^{\beta -1+\frac{2}{nq}}{ \, \mathrm{d} t} + \int _{1}^{\infty }K(-t, 1)t^{\beta -1-\frac{2}{np}}{ \, \mathrm{d} t}. \end{aligned}$$
(2.25)
Letting \(n\to \infty \) in (2.25), and using (2.13), we get
$$\begin{aligned} & \frac{1}{n} \int _{\mathbb{R}} \int _{\mathbb{R}}K(x,y)f_{n}(x)g_{n}(y){ \,\mathrm{d} x\,\mathrm{d} y} \\ &\quad = \int _{\mathbb{R}^{+}} K(t, 1)t^{\beta -1}{\,\mathrm{d} t} + \int _{\mathbb{R}^{+}}K(-t, 1)t^{\beta -1}{\,\mathrm{d} t}+o(1) \\ &\quad = \int _{\mathbb{R}}K(t, 1)t^{\beta -1}{\,\mathrm{d} t}+o(1)=C_{ \eta _{1},\eta _{2}}(a, b, c, d, \beta )+o(1). \end{aligned}$$
The proof of Lemma 2.5 is completed. □

3 Main results

Theorem 3.1
Let \(\eta _{1},\eta _{2}, \delta \in \{1,-1\}\), \(a>c\geq d >b>0\) and \(c\neq d\) for \(\eta _{2}=-1\). Let β be such that \(\beta \geq 1 \), and \(\beta \neq 1\) for \(\eta _{1}=-1\), \(\eta _{2}=1\). Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\mu (x)=| x| ^{p(1-\beta )-1}\) and \(\nu (y)=| y| ^{q(1-\delta \beta )-1}\). Let \(f(x)\), \(g(y)\geq 0\) with \(f(x)\in L_{\mu }^{p}(\mathbb{R})\) and \(g(y)\in L_{\nu }^{q}(\mathbb{R})\). \(K(x,y)\) and \(C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )\) are defined via Lemma 2.4. Then
$$ \int _{\mathbb{R}} \int _{\mathbb{R}}K(x,y)f(x)g(y){\,\mathrm{d} x\,\mathrm{d} y} < \Gamma ( \beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }, $$
(3.1)
where the constant factor \(\Gamma (\beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )\) is the best possible.
Proof
By Hölder’s inequality, we obtain
$$\begin{aligned} & \int _{\mathbb{R}} \int _{\mathbb{R}} K(x, y)f(x)g(y){\,\mathrm{d} x\,\mathrm{d} y} \\ & \quad = \int _{\mathbb{R}} \int _{\mathbb{R}} \bigl( \bigl( K(x, y) \bigr)^{\frac{1}{p}} \vert y \vert ^{\frac{\delta \beta -1}{p}} \vert x \vert ^{\frac{1-\beta }{q}}f(x) \bigr) \\ &\qquad {}\times \bigl( \bigl( K(x, y) \bigr)^{\frac{1}{q}} \vert x \vert ^{ \frac{\beta -1}{q}} \vert y \vert ^{\frac{1-\delta \beta }{p}}g(y) \bigr){ \, \mathrm{d} x\,\mathrm{d} y} \\ & \quad \leq \biggl( \int _{\mathbb{R}} \int _{\mathbb{R}} K(x, y) \vert y \vert ^{\delta \beta -1} \vert x \vert ^{\frac{p(1-\beta )}{q}}f^{p}(x){ \,\mathrm{d} x\, \mathrm{d} y} \biggr)^{\frac{1}{p}} \\ & \qquad {} \times \biggl( \int _{\mathbb{R}} \int _{\mathbb{R}} K(x, y) \vert x \vert ^{\beta -1} \vert y \vert ^{\frac{q(1-\delta \beta )}{p}}g^{q}(y){ \,\mathrm{d} x\, \mathrm{d} y} \biggr)^{\frac{1}{q}} \\ &\quad = \biggl( \int _{\mathbb{R}} \omega (x) \vert x \vert ^{\frac{p(1-\beta )}{q}}f^{p}(x){ \,\mathrm{d} x} \biggr)^{\frac{1}{p}} \biggl( \int _{\mathbb{R}} \varpi (y) \vert y \vert ^{\frac{q(1-\delta \beta )}{p}}g^{q}(y)dy \biggr)^{\frac{1}{q}}, \end{aligned}$$
(3.2)
where \(\omega (x)=\int _{\mathbb{R}} K(x, y)| y| ^{\delta \beta -1} \,\mathrm{d} y\), and \(\varpi (y)=\int _{\mathbb{R}} K(x, y)| x| ^{\beta -1}{ \,\mathrm{d} x} \).
Setting \(xy^{\eta }=t\), and using (2.13), we have
$$\begin{aligned} \omega (x)&= \vert x \vert ^{-\beta } \int _{\mathbb{R}}K(t,1) \vert t \vert ^{ \beta -1}{\, \mathrm{d} t} \\ &=\Gamma (\beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) \vert x \vert ^{-\beta } \quad (x\neq 0) \end{aligned}$$
(3.3)
and
$$\begin{aligned} \varpi (y)&= \vert y \vert ^{-\delta \beta } \int _{\mathbb{R}}K(t,1) \vert t \vert ^{\beta -1}{\, \mathrm{d} t} \\ &=\Gamma (\beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) \vert y \vert ^{-\delta \beta }\quad (y\neq 0). \end{aligned}$$
(3.4)
Plugging (3.3) and (3.4) back to (3.2), we have
$$ \int _{\mathbb{R}} \int _{\mathbb{R}}K(x,y)f(x)g(y){\,\mathrm{d} x \,\mathrm{d} y} \leq \Gamma (\beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. $$
(3.5)
If (3.5) takes the form of an equality, then there must be two constants \(A_{1}\) and \(A_{2}\) that are not both equal to zero, such that
$$ A_{1} K(x, y) \vert y \vert ^{\delta \beta -1} \vert x \vert ^{ \frac{p(1-\beta )}{q}}f^{p}(x)=A_{2} K(x, y) \vert x \vert ^{\beta -1} \vert y \vert ^{\frac{q(1-\delta \beta )}{p}}g^{q}(y), $$
a.e. in \(\mathbb{R}\times \mathbb{R}\), that is,
$$ A_{1} \vert x \vert ^{p(1-\beta )}f^{p}(x)=A_{2} \vert y \vert ^{q(1-\delta \beta )}g^{q}(y), $$
a.e. in \(\mathbb{R}\times \mathbb{R}\). Therefore, there exists a constant A such that \(A_{1}| x| ^{p(1-\beta )}f^{p}(x)=A\), a.e. in \(\mathbb{R}\), and \(A_{2}| y| ^{q(1-\delta \beta )}g^{q}(y)=A\), a.e. in \(\mathbb{R}\). Without loss of generality, we assume that \(A_{1}\neq 0\), then we can obtain \(x^{p(1-\beta )-1}f^{p}(x)=\frac{A}{A_{1}x}\) a.e. in \(\mathbb{R}\), which contradicts the fact \(f(x)\in L_{\mu }^{p}(\mathbb{R})\). Hence, (3.5) keeps the form of a strict inequality, and (3.1) is obtained.
What we need to prove next is that the constant factor \(\Gamma (\beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )\) in inequality (3.1) is the best possible. Suppose that there exists a positive constant \(k<\Gamma (\beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )\), such that (3.1) still holds if \(C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )\) is replaced by k. That is,
$$ \int _{\mathbb{R}} \int _{\mathbb{R}}K(x, y)f(x)g(y){\,\mathrm{d} x\,\mathrm{d} y} < k \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. $$
(3.6)
Replacing f and g in (3.6) with \(f_{n}\) and \(g_{n}\) defined in Lemma 2.5, respectively, we obtain
$$\begin{aligned} & \frac{1}{n} \int _{\mathbb{R}} \int _{\mathbb{R}}K(x,y)f_{n}(x)g_{n}(y){ \,\mathrm{d} x\,\mathrm{d} y} \\ &\quad < \frac{k}{n} \biggl( \int _{1}^{\infty }x^{-\frac{2}{n}-1}{ \,\mathrm{d} x}+ \int _{-\infty }^{-1} \vert x \vert ^{- \frac{2}{n}-1}{ \,\mathrm{d} x} \biggr)^{\frac{1}{p}} \\ &\qquad {}\times \biggl( \int _{D_{\delta }} \vert x \vert ^{\frac{2\delta }{n}-1}{ \,\mathrm{d} x} \biggr)^{\frac{1}{q}}=k. \end{aligned}$$
(3.7)
Combining (3.7) and (2.21), we have \(C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )+o(1)< k \). Let \(n\rightarrow \infty \), then we have \(C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )\leq k\). This contradicts the hypothesis obviously. Therefore, the constant factor in (3.1) is the best possible. □
Theorem 3.2
Let \(\eta _{1},\eta _{2}, \delta \in \{1,-1\}\), \(a>c\geq d> b>0\) and \(c\neq d\) for \(\eta _{2}=-1\). Let β be such that \(\beta \geq 1 \), and \(\beta \neq 1\) for \(\eta _{1}=-1\), \(\eta _{2}=1\). Suppose that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\mu (x)=| x| ^{p(1-\beta )-1}\) and \(\nu (y)=| y | ^{q(1-\delta \beta )-1}\). Let \(f(x)\geq 0\) with \(f(x)\in L_{\mu }^{p}(0, \infty )\). \(K(x,y)\) and \(C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )\) be defined via Lemma 2.4. Then
$$ \int _{\mathbb{R}} \vert y \vert ^{p\delta \beta -1} \biggl( \int _{\mathbb{R}}K(x,y)f(x){ \,\mathrm{d} x} \biggr)^{p} \,\mathrm{d} y< \bigl(C_{\eta _{1}, \eta _{2}}(a, b, c, d, \beta ) \Vert f \Vert _{p,\mu } \bigr)^{p}, $$
(3.8)
where the constant factor \((\Gamma (\beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) )^{p}\) is the best possible, and (3.8) is equivalent to (3.1).
Proof
Consider \(g(y):=| y| ^{p\delta \beta -1} (\int _{\mathbb{R}}K(x, y)f(x){ \,\mathrm{d} x} )^{p-1}\). By Theorem 3.1, we can get
$$\begin{aligned} 0&< \bigl( \Vert g \Vert _{q,\nu } \bigr)^{pq}= \biggl( \int _{\mathbb{R}} \vert y \vert ^{q(1-\delta \beta )-1}g^{q}(y) \,\mathrm{d} y \biggr)^{p} \\ &= \biggl( \int _{\mathbb{R}} \vert y \vert ^{p\delta \beta -1} \biggl( \int _{\mathbb{R}}K(x,y)f(x){\,\mathrm{d} x} \biggr)^{p} \,\mathrm{d} y \biggr)^{p} \\ &= \biggl( \int _{\mathbb{R}} \int _{\mathbb{R}}K(x,y)f(x)g(y){\,\mathrm{d} x\,\mathrm{d} y} \biggr)^{p} \leq \bigl(C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q,\nu } \bigr)^{p}. \end{aligned}$$
(3.9)
Therefore
$$\begin{aligned} 0&< \int _{\mathbb{R}} \vert y \vert ^{p\delta \beta -1} \biggl( \int _{\mathbb{R}}K (x,y)f(x){\,\mathrm{d} x} \biggr)^{p} \,\mathrm{d} y \\ &= \bigl( \Vert g \Vert _{q,\nu } \bigr)^{q} \leq \bigl(C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) \Vert f \Vert _{p,\mu } \bigr)^{p}. \end{aligned}$$
(3.10)
Since \(f(x)\in L_{\mu }^{p}(\mathbb{R})\), by using (3.10), we obtain \(g(y)\in L_{\nu }^{q}(\mathbb{R})\). By using Theorem 3.1 again, we can deduce that both (3.9) and (3.1) take the form of a strict inequality, and (3.8) is proved. On the other hand, if (3.8) is valid, by Hölder’s inequality, we obtain
$$\begin{aligned} & \int _{\mathbb{R}} \int _{\mathbb{R}}K(x,y)f(x)g(y){\,\mathrm{d} x \,\mathrm{d} y} \\ &\quad = \int _{\mathbb{R}} \biggl( \vert y \vert ^{-(1-\delta \beta -\frac{1}{q})} \int _{\mathbb{R}} K(x,y)f(x){\,\mathrm{d} x} \biggr) \bigl( \vert y \vert ^{1-\delta \beta -\frac{1}{q}}g(y) \bigr)\,\mathrm{d} y \\ &\quad \leq \biggl( \int _{\mathbb{R}} \vert y \vert ^{p\delta \beta -1} \biggl( \int _{\mathbb{R}} K(x,y)f(x){\,\mathrm{d} x} \biggr)^{p} \,\mathrm{d} y \biggr)^{\frac{1}{p}} \Vert g \Vert _{q,\nu }. \end{aligned}$$
(3.11)
Combining (3.8) and (3.11), we can get (3.1). Therefore, (3.1) is equivalent to (3.8). From the equivalence of (3.1) and (3.8), we can easily show that the constant factor \((\Gamma (\beta )C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta ) )^{p}\) in (3.8) is the best possible. Theorem 3.2 is proved. □

4 Applications

Setting \(\eta _{1}=-1\), \(\eta _{2}=1\), \(c=d=1\) and \(\beta =2n\) (\(n\in {\mathbb{N}}^{+}\)) in Theorem 3.1, and using (2.1), we can obtain
$$ C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )=\frac{-2}{(2n-1)!} \biggl( \frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n}\varphi ^{(2n-1)} \biggl( \frac{\pi \ln a}{\ln \frac{a}{b}} \biggr). $$
Therefore, the following corollary holds.
Corollary 4.1
Let \(\delta \in \{1,-1\}\), \(a>1> b>0\). Let \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1\). Suppose that \(\varphi (x)=\cot x\), \(\mu (x)=| x| ^{p(1-2n)-1}\) and \(\nu (y)=| y | ^{q(1-2\delta n)-1}\), where \(n\in {\mathbb{N}}^{+}\). Let \(f(x)\), \(g(y)\geq 0\) with \(f(x)\in L_{\mu }^{p}(\mathbb{R})\) and \(g(y)\in L_{\nu }^{q}(\mathbb{R})\). Then
$$ \int _{\mathbb{R}} \int _{\mathbb{R}} \frac{f(x)g(y)}{ \vert a^{xy^{\delta }}-b^{xy^{\delta }} \vert } { \,\mathrm{d} x\,\mathrm{d} y} < - \biggl( \frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n}\varphi ^{(2n-1)} \biggl( \frac{\pi \ln a}{\ln \frac{a}{b}} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. $$
(4.1)
Particularly, let \(a=b^{-1}=e\) in (4.1), by virtue of (2.8), then (4.1) is transformed to
$$ \int _{\mathbb{R}} \int _{\mathbb{R}} \bigl\vert \operatorname{csch} \bigl(xy^{\delta } \bigr) \bigr\vert f(x)g(y) {\,\mathrm{d} x\,\mathrm{d} y}< \frac{B_{n}}{n} \bigl(2^{2n}-1 \bigr) \pi ^{2n} \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. $$
(4.2)
Let \(p=q=2 \), \(\delta =1\) in (4.2), then we have (1.9).
Setting \(\eta _{1}=1\), \(\eta _{2}=1\), \(c=d=1\) and \(\beta =2n+1\) (\(n\in {\mathbb{N}}\)) in Theorem 3.1, and using (2.5), we have
$$ C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )=\frac{2}{(2n)!} \biggl( \frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n+1}\psi ^{(2n)} \biggl( \frac{\pi \ln a}{\ln \frac{a}{b}} \biggr). $$
Therefore, we obtain the following corollary.
Corollary 4.2
Let \(\delta \in \{1,-1\}\) and \(a>1> b>0 \). Let \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1\). Suppose that \(\psi (x)=\csc x\), \(\mu (x)=| x| ^{-2np-1}\) and \(\nu (y)=| y | ^{-2\delta nq-1}\), where \(n\in {\mathbb{N}}\). Let \(f(x)\), \(g(y)\geq 0\) with \(f(x)\in L_{\mu }^{p}(\mathbb{R})\) and \(g(y)\in L_{\nu }^{q}(\mathbb{R})\). Then
$$ \int _{\mathbb{R}} \int _{\mathbb{R}} \frac{f(x)g(y)}{ a^{xy^{\delta }}+b^{xy^{\delta }}} {\,\mathrm{d} x\,\mathrm{d} y} < \biggl(\frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n+1} \psi ^{(2n)} \biggl(\frac{\pi \ln a}{\ln \frac{a}{b}} \biggr) \Vert f \Vert _{p, \mu } \Vert g \Vert _{q, \nu }. $$
(4.3)
Particularly, let \(a=b^{-1}=e\) in (4.3), by virtue of (2.10), then (4.3) is transformed to
$$ \int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{sech} \bigl(xy^{\delta } \bigr)f(x)g(y) {\,\mathrm{d} x\,\mathrm{d} y}< \frac{E_{n}}{4^{n}}\pi ^{2n+1} \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. $$
(4.4)
Let \(p=q=2\) and \(\delta =1\) in (4.4), then we get (1.8).
Setting \(\eta _{1}=-1\), \(\eta _{2}=1\), \(ab=cd\) and \(\beta =2n\) (\(n\in {\mathbb{N}}^{+}\)) in Theorem 3.1, and using (2.1), we obtain
$$ C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )=\frac{-2}{(2n-1)!} \biggl( \frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n}\varphi ^{(2n-1)} \biggl( \frac{\pi \ln (a/c)}{\ln (a/b)} \biggr). $$
Hence, we can obtain another corollary as follows.
Corollary 4.3
Let \(\delta \in \{1,-1\}\), \(a>c\geq d >b>0\) and \(ab=cd\). Let \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1\). Suppose that \(\varphi (x)=\cot x\), \(\mu (x)=| x| ^{p(1-2n)-1}\) and \(\nu (y)=| y | ^{q(1-2\delta n)-1}\), where \(n\in {\mathbb{N}}^{+}\). Let \(f(x)\), \(g(y)\geq 0\) with \(f(x)\in L_{\mu }^{p}(\mathbb{R})\) and \(g(y)\in L_{\nu }^{q}(\mathbb{R})\). Then
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}} \frac{ c^{xy^{\delta }}+d^{xy^{\delta }}}{ \vert a^{xy^{\delta }}-b^{xy^{\delta }} \vert } f(x)g(y) {\,\mathrm{d} x \, \mathrm{d} y} \\ &\quad < -2 \biggl(\frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n}\varphi ^{(2n-1)} \biggl(\frac{\pi \ln (a/c)}{\ln (a/b)} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.5)
Let \(a=e^{\lambda _{1}}\), \(b=e^{-\lambda _{1}}\), \(c=e^{\lambda _{2}}\) and \(d=e^{-\lambda _{2}}\) in (4.5), where \(\lambda _{1}>\lambda _{2}>0\), then we have
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}} \bigl\vert \operatorname{csch} \bigl(\lambda _{1}xy^{ \delta } \bigr) \bigr\vert \operatorname{cosh} \bigl(\lambda _{2}xy^{\delta } \bigr)f(x)g(y) { \,\mathrm{d} x \,\mathrm{d} y} \\ &\quad < -2 \biggl(\frac{\pi }{2\lambda _{1}} \biggr)^{2n}\varphi ^{(2n-1)} \biggl(\frac{(\lambda _{1}-\lambda _{2})\pi }{2\lambda _{1}} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.6)
Letting \(\lambda _{1}=2\) and \(\lambda _{2}=1\) in (4.6), in view of (2.9), we can also obtain (4.2).
Letting \(\lambda _{1}=4\) and \(\lambda _{2}=1\) in (4.6), we have
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{sech} \bigl(2xy^{\delta } \bigr) \bigl\vert \operatorname{csch}\bigl(xy^{\delta } \bigr) \bigr\vert f(x)g(y) {\,\mathrm{d} x \,\mathrm{d} y} \\ &\quad < \frac{-\pi ^{2n}}{8^{2n-1}}\varphi ^{(2n-1)} \biggl( \frac{3\pi }{8} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.7)
Setting \(\eta _{1}=-1\), \(\eta _{2}=-1\), \(ab=cd\) and \(\beta =2n+1\) (\(n\in {\mathbb{N}}\)) in Theorem 3.1, and using (2.2), we have
$$ C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )=\frac{2}{(2n)!} \biggl( \frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n+1}\varphi ^{(2n)} \biggl( \frac{\pi \ln (a/c)}{\ln (a/b)} \biggr). $$
Therefore, the following corollary holds obviously.
Corollary 4.4
Let \(\delta \in \{1,-1\}\), \(a>c\geq d >b>0\) and \(ab=cd\). Let \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\). Suppose that \(\varphi (x)=\cot x\), \(\mu (x)=| x| ^{-2np-1}\) and \(\nu (y)=| y | ^{-2\delta nq-1}\), where \(n\in {\mathbb{N}}\). Let \(f(x)\), \(g(y)\geq 0\) with \(f(x)\in L_{\mu }^{p}(\mathbb{R})\) and \(g(y)\in L_{\nu }^{q}(\mathbb{R})\). Then
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}} \frac{ c^{xy^{\delta }}-d^{xy^{\delta }}}{ a^{xy^{\delta }}-b^{xy^{\delta }}} f(x)g(y) {\,\mathrm{d} x \, \mathrm{d} y} \\ &\quad < 2 \biggl(\frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n+1}\varphi ^{(2n)} \biggl(\frac{\pi \ln (a/c)}{\ln (a/b)} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.8)
Let \(a=e^{\lambda _{1}}\), \(b=e^{-\lambda _{1}}\), \(c=e^{\lambda _{2}}\) and \(d=e^{-\lambda _{2}}\) in (4.8), where \(\lambda _{1}>\lambda _{2}>0\), then we have
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{csch} \bigl(\lambda _{1}xy^{ \delta } \bigr)\operatorname{sinh} \bigl(\lambda _{2}xy^{\delta } \bigr) f(x)g(y) { \,\mathrm{d} x\,\mathrm{d} y} \\ &\quad < 2 \biggl(\frac{\pi }{2\lambda _{1}} \biggr)^{2n+1}\varphi ^{(2n)} \biggl(\frac{(\lambda _{1}-\lambda _{2})\pi }{2\lambda _{1}} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.9)
Let \(\lambda _{1}=2\) and \(\lambda _{2}=1\) in (4.9), then it follows from (2.10) that we also get (4.4).
Let \(\lambda _{1}=4\) and \(\lambda _{2}=1\) in (4.9), then we get
$$ \int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{sech} \bigl(xy^{\delta } \bigr) \operatorname{sech} \bigl(2xy^{\delta } \bigr)f(x)g(y) {\,\mathrm{d} x \,\mathrm{d} y}< \frac{\pi ^{2n+1}}{8^{2n}}\varphi ^{(2n)} \biggl( \frac{3\pi }{8} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. $$
(4.10)
Setting \(\eta _{1}=1\), \(\eta _{2}=-1\), \(ab=cd\) and \(\beta =2n\) (\(n\in {\mathbb{N}}^{+}\)) in Theorem 3.1, and using (2.4), we have
$$ C_{\eta _{1},\eta _{2}}(a, b, c, d, \beta )=\frac{-2}{(2n-1)!} \biggl( \frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n}\psi ^{(2n-1)} \biggl( \frac{\pi \ln (a/c)}{\ln (a/b)} \biggr). $$
Therefore, we obtain the following corollary.
Corollary 4.5
Let \(\delta \in \{1,-1\}\), \(a>c\geq d >b>0\) and \(ab=cd\). Let \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1\). Suppose that \(\psi (x)=\csc x\), \(\mu (x)=| x| ^{p(1-2n)-1}\) and \(\nu (y)=| y | ^{q(1-2\delta n)-1}\), where \(n\in {\mathbb{N}}^{+}\). Let \(f(x)\), \(g(y)\geq 0\) with \(f(x)\in L_{\mu }^{p}(\mathbb{R})\) and \(g(y)\in L_{\nu }^{q}(\mathbb{R})\). Then
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}} \frac{ \vert c^{xy^{\delta }}-d^{xy^{\delta }} \vert }{ a^{xy^{\delta }}+b^{xy^{\delta }}} f(x)g(y) {\,\mathrm{d} x \, \mathrm{d} y} \\ &\quad < -2 \biggl(\frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n}\psi ^{(2n-1)} \biggl(\frac{\pi \ln (a/c)}{\ln (a/b)} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.11)
Let \(a=e^{\lambda _{1}}\), \(b=e^{-\lambda _{1}}\), \(c=e^{\lambda _{2}}\) and \(d=e^{-\lambda _{2}}\) in (4.11), where \(\lambda _{1}>\lambda _{2}>0\), then we have
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{sech}\bigl(\lambda _{1}xy^{ \delta } \bigr) \bigl\vert \operatorname{sinh} \bigl(\lambda _{2}xy^{\delta } \bigr) \bigr\vert f(x)g(y) { \,\mathrm{d} x\,\mathrm{d} y} \\ &\quad < -2 \biggl(\frac{\pi }{2\lambda _{1}} \biggr)^{2n}\psi ^{(2n-1)} \biggl( \frac{(\lambda _{1}-\lambda _{2})\pi }{2\lambda _{1}} \biggr) \Vert f \Vert _{p, \mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.12)
Let \(\lambda _{1}=2\) and \(\lambda _{2}=1\) in (4.12), then we can have
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{sech} \bigl(xy^{\delta } \bigr) \bigl\vert \operatorname{tanh} \bigl(2xy^{\delta } \bigr) \bigr\vert f(x)g(y) { \,\mathrm{d} x\,\mathrm{d} y} \\ &\quad < \frac{-\pi ^{2n}}{4^{2n-1}}\psi ^{(2n-1)} \biggl( \frac{\pi }{4} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.13)
At last, setting \(\eta _{1}=1\), \(\eta _{2}=1\), \(ab=cd\) and \(\beta =2n+1\) (\(n\in {\mathbb{N}}\)) in Theorem 3.1, by virtue of (2.5), then the following corollary holds.
Corollary 4.6
Let \(\delta \in \{1,-1\}\), \(a>c\geq d >b>0\) and \(ab=cd\). Let \(p>1\) and \(\frac{1}{p}+\frac{1}{q}=1\). Suppose that \(\psi (x)=\csc x\), \(\mu (x)=| x| ^{-2np-1}\) and \(\nu (y)=| y | ^{-2\delta nq-1}\), where \(n\in {\mathbb{N}}\). Let \(f(x)\), \(g(y)\geq 0\) with \(f(x)\in L_{\mu }^{p}(\mathbb{R})\) and \(g(y)\in L_{\nu }^{q}(\mathbb{R})\). Then
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}} \frac{ c^{xy^{\delta }}+d^{xy^{\delta }}}{ a^{xy^{\delta }}+b^{xy^{\delta }}} f(x)g(y) {\,\mathrm{d} x \, \mathrm{d} y} \\ &\quad < 2 \biggl(\frac{\pi }{\ln \frac{a}{b}} \biggr)^{2n+1}\psi ^{(2n)} \biggl(\frac{\pi \ln (a/c)}{\ln (a/b)} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.14)
Let \(a=e^{\lambda _{1}}\), \(b=e^{-\lambda _{1}}\), \(c=e^{\lambda _{2}}\) and \(d=e^{-\lambda _{2}}\) in (4.14), where \(\lambda _{1}>\lambda _{2}>0\), then we have
$$\begin{aligned} &\int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{sech} \bigl(\lambda _{1}xy^{ \delta } \bigr)\operatorname{cosh} \bigl(\lambda _{2}xy^{\delta } \bigr) f(x)g(y) { \,\mathrm{d} x\,\mathrm{d} y} \\ &\quad < 2 \biggl(\frac{\pi }{2\lambda _{1}} \biggr)^{2n+1}\psi ^{(2n)} \biggl( \frac{(\lambda _{1}-\lambda _{2})\pi }{2\lambda _{1}} \biggr) \Vert f \Vert _{p, \mu } \Vert g \Vert _{q, \nu }. \end{aligned}$$
(4.15)
Letting \(\lambda _{1}=2\), \(\lambda _{2}=1\) in (4.15), we have
$$ \int _{\mathbb{R}} \int _{\mathbb{R}}\operatorname{csch} \bigl(xy^{\delta } \bigr) \operatorname{tanh} \bigl(2xy^{\delta } \bigr) f(x)g(y) {\, \mathrm{d} x \,\mathrm{d} y}< \frac{\pi ^{2n+1}}{4^{2n}}\psi ^{(2n)} \biggl( \frac{\pi }{4} \biggr) \Vert f \Vert _{p,\mu } \Vert g \Vert _{q, \nu }. $$

Acknowledgements

The author is indebted to the anonymous referees for their valuable suggestions and comments that helped improve the paper significantly.

Competing interests

The author declares that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.
Literature
1.
go back to reference Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, London (1952) MATH Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, London (1952) MATH
2.
go back to reference Rassias, M.Th., Yang, B.C.: On a Hilbert-type integral inequality in the whole plane related to the extended Riemann zeta function. Complex Anal. Oper. Theory 13(4), 1765–1782 (2019) MathSciNetCrossRef Rassias, M.Th., Yang, B.C.: On a Hilbert-type integral inequality in the whole plane related to the extended Riemann zeta function. Complex Anal. Oper. Theory 13(4), 1765–1782 (2019) MathSciNetCrossRef
3.
go back to reference Rassias, M.Th., Yang, B.C.: On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole plane. Acta Appl. Math. 160(1), 67–80 (2019) MathSciNetCrossRef Rassias, M.Th., Yang, B.C.: On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole plane. Acta Appl. Math. 160(1), 67–80 (2019) MathSciNetCrossRef
4.
go back to reference Rassias, M.Th., Yang, B.C.: A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function. J. Math. Anal. Appl. 428, 1286–1308 (2015) MathSciNetCrossRef Rassias, M.Th., Yang, B.C.: A Hilbert-type integral inequality in the whole plane related to the hypergeometric function and the beta function. J. Math. Anal. Appl. 428, 1286–1308 (2015) MathSciNetCrossRef
5.
7.
go back to reference Krnić, M., Pečarić, J.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8, 29–51 (2005) MathSciNetMATH Krnić, M., Pečarić, J.: General Hilbert’s and Hardy’s inequalities. Math. Inequal. Appl. 8, 29–51 (2005) MathSciNetMATH
8.
go back to reference Krnić, M., Pečarić, J., Perić, I., et al.: Advances in Hilbert-Type Inequalities. Element Press, Zagreb (2012) MATH Krnić, M., Pečarić, J., Perić, I., et al.: Advances in Hilbert-Type Inequalities. Element Press, Zagreb (2012) MATH
9.
go back to reference Krnić, M., Pečarić, J., Vuković, P.: Discrete Hilbert-type inequalities with general homogeneous kernels. Rend. Circ. Mat. Palermo 60, 161–171 (2011) MathSciNetCrossRef Krnić, M., Pečarić, J., Vuković, P.: Discrete Hilbert-type inequalities with general homogeneous kernels. Rend. Circ. Mat. Palermo 60, 161–171 (2011) MathSciNetCrossRef
10.
11.
go back to reference Kuang, J.C., Debnath, L.: On new generalizations of Hilbert’s inequality and their applications. J. Math. Anal. Appl. 245, 248–265 (2000) MathSciNetCrossRef Kuang, J.C., Debnath, L.: On new generalizations of Hilbert’s inequality and their applications. J. Math. Anal. Appl. 245, 248–265 (2000) MathSciNetCrossRef
12.
go back to reference You, M.H.: On a new discrete Hilbert-type inequality and its application. Math. Inequal. Appl. 18, 1575–1587 (2015) MathSciNetMATH You, M.H.: On a new discrete Hilbert-type inequality and its application. Math. Inequal. Appl. 18, 1575–1587 (2015) MathSciNetMATH
13.
go back to reference Yang, B.C.: On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Anal. Appl. 1(1), 1–8 (2004) MathSciNetCrossRef Yang, B.C.: On an extension of Hilbert’s integral inequality with some parameters. Aust. J. Anal. Appl. 1(1), 1–8 (2004) MathSciNetCrossRef
14.
go back to reference Rassias, M.Th., Yang, B.C.: On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequal. 13(2), 315–334 (2019) MathSciNetCrossRef Rassias, M.Th., Yang, B.C.: On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequal. 13(2), 315–334 (2019) MathSciNetCrossRef
15.
go back to reference Rassias, M.Th., Yang, B.C., Raigorodskii, A.: Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta function. Appl. Anal. Discrete Math. 12, 273–296 (2018) MathSciNetCrossRef Rassias, M.Th., Yang, B.C., Raigorodskii, A.: Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta function. Appl. Anal. Discrete Math. 12, 273–296 (2018) MathSciNetCrossRef
16.
go back to reference Rassias, M.Th., Yang, B.C., Raigorodskii, A.: On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta function. In: Trigonometric Sums and Their Applications, pp. 229–259. Springer, Berlin (2020) CrossRef Rassias, M.Th., Yang, B.C., Raigorodskii, A.: On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta function. In: Trigonometric Sums and Their Applications, pp. 229–259. Springer, Berlin (2020) CrossRef
17.
go back to reference Rassias, M.Th., Yang, B.C.: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75–93 (2013) MathSciNetMATH Rassias, M.Th., Yang, B.C.: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75–93 (2013) MathSciNetMATH
19.
go back to reference Yang, B.C.: An extended multi-dimensional Hardy-Hilbert-type inequality with a general homogeneous kernel. Int. J. Nonlinear Anal. Appl. 9, 131–143 (2018) MATH Yang, B.C.: An extended multi-dimensional Hardy-Hilbert-type inequality with a general homogeneous kernel. Int. J. Nonlinear Anal. Appl. 9, 131–143 (2018) MATH
20.
go back to reference Yang, B.C., Debnath, L.: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014) CrossRef Yang, B.C., Debnath, L.: Half-Discrete Hilbert-Type Inequalities. World Scientific, Singapore (2014) CrossRef
21.
go back to reference Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009) Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
22.
go back to reference Krnić, M., Pečarić, J., Vuković, P.: A unified treatment of half-discrete Hilbert-type inequalities with a homogeneous kernel. Mediterr. J. Math. 10, 1697–1716 (2013) MathSciNetCrossRef Krnić, M., Pečarić, J., Vuković, P.: A unified treatment of half-discrete Hilbert-type inequalities with a homogeneous kernel. Mediterr. J. Math. 10, 1697–1716 (2013) MathSciNetCrossRef
23.
go back to reference Gao, X., Gao, M.Z.: A new Hilbert-type integral inequality with parameters. J. Math. Res. Expo. 31, 467–473 (2011) MathSciNet Gao, X., Gao, M.Z.: A new Hilbert-type integral inequality with parameters. J. Math. Res. Expo. 31, 467–473 (2011) MathSciNet
24.
go back to reference Hong, Y., He, B., Yang, B.C.: Necessary and sufficient conditions for the validity of Hilbert-type inequalities with a class of quasi-homogeneous kernels ans its applications in operator theory. J. Math. Inequal. 12, 777–788 (2018) MathSciNetCrossRef Hong, Y., He, B., Yang, B.C.: Necessary and sufficient conditions for the validity of Hilbert-type inequalities with a class of quasi-homogeneous kernels ans its applications in operator theory. J. Math. Inequal. 12, 777–788 (2018) MathSciNetCrossRef
26.
go back to reference Mintrinovic, D.S., Pečarić, J., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) CrossRef Mintrinovic, D.S., Pečarić, J., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991) CrossRef
27.
go back to reference Yang, B.C.: A new Hilbert-type integral inequality with the homogeneous kernel of degree 0. J. Zhejiang Univ. Sci. Ed. 39, 390–392 (2012) MathSciNet Yang, B.C.: A new Hilbert-type integral inequality with the homogeneous kernel of degree 0. J. Zhejiang Univ. Sci. Ed. 39, 390–392 (2012) MathSciNet
28.
go back to reference Liu, Q., Long, S.C.: A Hilbert-type integral inequality with the kernel of hyperbolic secant function. J. Zhejiang Univ. Sci. Ed. 40, 255–259 (2013) MathSciNet Liu, Q., Long, S.C.: A Hilbert-type integral inequality with the kernel of hyperbolic secant function. J. Zhejiang Univ. Sci. Ed. 40, 255–259 (2013) MathSciNet
29.
go back to reference Yang, B.C., Chen, Q.: A Hilbert-type integral inequality related to Riemann zeta function. J. Jilin Univ. Sci. Ed. 52, 869–872 (2014) MathSciNetMATH Yang, B.C., Chen, Q.: A Hilbert-type integral inequality related to Riemann zeta function. J. Jilin Univ. Sci. Ed. 52, 869–872 (2014) MathSciNetMATH
30.
go back to reference Wang, Z.X., Guo, D.R.: Introduction to Special Functions. Higher Education Press, Beijing (2012) Wang, Z.X., Guo, D.R.: Introduction to Special Functions. Higher Education Press, Beijing (2012)
31.
go back to reference Richard, C.F.J.: Introduction to Calculus and Analysis. Springer, New York (1989) Richard, C.F.J.: Introduction to Calculus and Analysis. Springer, New York (1989)
Metadata
Title
On a class of Hilbert-type inequalities in the whole plane related to exponent function
Author
Minghui You
Publication date
01-12-2021
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2021
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-021-02563-5

Other articles of this Issue 1/2021

Journal of Inequalities and Applications 1/2021 Go to the issue

Premium Partner