Skip to main content
Top

2017 | OriginalPaper | Chapter

On a Diffuse Interface Model for Tumour Growth with Non-local Interactions and Degenerate Mobilities

Authors : Sergio Frigeri, Kei Fong Lam, Elisabetta Rocca

Published in: Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study a non-local variant of a diffuse interface model proposed by Hawkins–Daarud et al. (Int. J. Numer. Methods Biomed. Eng. 28:3–24, 2012) for tumour growth in the presence of a chemical species acting as nutrient. The system consists of a Cahn–Hilliard equation coupled to a reaction-diffusion equation. For non-degenerate mobilities and smooth potentials, we derive well-posedness results, which are the non-local analogue of those obtained in Frigeri et al. (European J. Appl. Math. 2015). Furthermore, we establish existence of weak solutions for the case of degenerate mobilities and singular potentials, which serves to confine the order parameter to its physically relevant interval. Due to the non-local nature of the equations, under additional assumptions continuous dependence on initial data can also be shown.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Armstrong, N.J., Painter, K.J., Sherratt, J.A.: A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243, 98–113 (2006)CrossRefMathSciNet Armstrong, N.J., Painter, K.J., Sherratt, J.A.: A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243, 98–113 (2006)CrossRefMathSciNet
2.
go back to reference Bates, P.W., Han, J.: The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation. J. Math. Anal. Appl. 311, 289–312 (2005)CrossRefMATHMathSciNet Bates, P.W., Han, J.: The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation. J. Math. Anal. Appl. 311, 289–312 (2005)CrossRefMATHMathSciNet
3.
4.
go back to reference Bosi, I., Fasano, A., Primicerio, M., Hillen, T.: A non-local model for cancer stem cells and the tumour growth paradox. Math. Med. Biol. 34, 59–75 (2017)MathSciNet Bosi, I., Fasano, A., Primicerio, M., Hillen, T.: A non-local model for cancer stem cells and the tumour growth paradox. Math. Med. Biol. 34, 59–75 (2017)MathSciNet
5.
go back to reference Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20, 175–212 (1999)MATHMathSciNet Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20, 175–212 (1999)MATHMathSciNet
6.
go back to reference Chaplain, M.A.J., Lachowicz, M., Szymańska, Z., Wrzosek, D.: Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 21, 719–743 (2011)CrossRefMATHMathSciNet Chaplain, M.A.J., Lachowicz, M., Szymańska, Z., Wrzosek, D.: Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 21, 719–743 (2011)CrossRefMATHMathSciNet
7.
go back to reference Chen, Y., Wise, S.M., Shenoy, V.B., Lowengrub, J.S.: A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane. Int. J. Numer. Meth. Biomed. Eng. 30, 726–754 (2014)CrossRefMathSciNet Chen, Y., Wise, S.M., Shenoy, V.B., Lowengrub, J.S.: A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane. Int. J. Numer. Meth. Biomed. Eng. 30, 726–754 (2014)CrossRefMathSciNet
8.
go back to reference Cherfils, L., Miranville, A., Zelik, S.: On a generalized Cahn–Hilliard equation with biological applications. Discrete Contin. Dyn. Syst. Ser. B 19, 2013–2026 (2014)CrossRefMATHMathSciNet Cherfils, L., Miranville, A., Zelik, S.: On a generalized Cahn–Hilliard equation with biological applications. Discrete Contin. Dyn. Syst. Ser. B 19, 2013–2026 (2014)CrossRefMATHMathSciNet
9.
go back to reference Colli, P., Frigeri, S., Grasselli, M.: Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system. J. Math. Anal. Appl. 386, 428–444 (2012)CrossRefMATHMathSciNet Colli, P., Frigeri, S., Grasselli, M.: Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system. J. Math. Anal. Appl. 386, 428–444 (2012)CrossRefMATHMathSciNet
10.
go back to reference Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn–Hilliard type phase field model related to tumor growth. Discrete Contin. Dyn. Syst. 35, 2423–2442 (2015)CrossRefMATHMathSciNet Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn–Hilliard type phase field model related to tumor growth. Discrete Contin. Dyn. Syst. 35, 2423–2442 (2015)CrossRefMATHMathSciNet
11.
go back to reference Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26, 93–108 (2015)CrossRefMATHMathSciNet Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26, 93–108 (2015)CrossRefMATHMathSciNet
12.
go back to reference Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. Discrete Contin. Dyn. Syst. Ser. S 10, 37–54 (2017)MATHMathSciNet Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. Discrete Contin. Dyn. Syst. Ser. S 10, 37–54 (2017)MATHMathSciNet
13.
go back to reference Cristini, V., Lowengrub, J.: Multiscale modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)CrossRef Cristini, V., Lowengrub, J.: Multiscale modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)CrossRef
14.
go back to reference Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. J. Math. Biol. 58, 723–763 (2009)CrossRefMATHMathSciNet Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. J. Math. Biol. 58, 723–763 (2009)CrossRefMATHMathSciNet
15.
go back to reference Dai, M., Feireisl, E., Rocca, E., Schimperna, G., Schonbek, M.: Analysis of a diffuse interface model for multispecies tumor growth. Nonlinearity 30, 1639–1658 (2017)CrossRefMATHMathSciNet Dai, M., Feireisl, E., Rocca, E., Schimperna, G., Schonbek, M.: Analysis of a diffuse interface model for multispecies tumor growth. Nonlinearity 30, 1639–1658 (2017)CrossRefMATHMathSciNet
16.
go back to reference Della Porta, F., Grasselli, M.: Convective nonlocal Cahn–Hilliard equations with reaction terms. Discrete Contin. Dyn. Syst. B 20, 1529–1553 (2015)CrossRefMATHMathSciNet Della Porta, F., Grasselli, M.: Convective nonlocal Cahn–Hilliard equations with reaction terms. Discrete Contin. Dyn. Syst. B 20, 1529–1553 (2015)CrossRefMATHMathSciNet
17.
go back to reference Della Porta, F., Grasselli, M.: On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. Commun. Pure Appl. Anal. 15, 299–317 (2016)CrossRefMATHMathSciNet Della Porta, F., Grasselli, M.: On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. Commun. Pure Appl. Anal. 15, 299–317 (2016)CrossRefMATHMathSciNet
18.
19.
go back to reference Frieboes, H.B., Jin, F., Chuang, Y.-L., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth – II: tumor invasion and angiogenesis. J. Theor. Biol. 264, 1254–1278 (2010)CrossRefMathSciNet Frieboes, H.B., Jin, F., Chuang, Y.-L., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth – II: tumor invasion and angiogenesis. J. Theor. Biol. 264, 1254–1278 (2010)CrossRefMathSciNet
20.
go back to reference Frigeri, S.: Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities. Math. Models Methods Appl. Sci. 26, 1957–1993 (2016)CrossRefMATHMathSciNet Frigeri, S.: Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities. Math. Models Methods Appl. Sci. 26, 1957–1993 (2016)CrossRefMATHMathSciNet
21.
go back to reference Frigeri, S., Grasselli, M.: Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials. Dyn. Partial Differ. Equ. 9, 273–304 (2012)CrossRefMATHMathSciNet Frigeri, S., Grasselli, M.: Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials. Dyn. Partial Differ. Equ. 9, 273–304 (2012)CrossRefMATHMathSciNet
22.
go back to reference Frigeri, S., Grasselli, M., Krejčí, P.: Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems. J. Differ. Equ. 255, 2587–2614 (2013)CrossRefMATHMathSciNet Frigeri, S., Grasselli, M., Krejčí, P.: Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems. J. Differ. Equ. 255, 2587–2614 (2013)CrossRefMATHMathSciNet
23.
go back to reference Frigeri, S., Grasselli, M., Rocca, E.: A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility. Nonlinearity 28, 1257–1293 (2015)CrossRefMATHMathSciNet Frigeri, S., Grasselli, M., Rocca, E.: A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility. Nonlinearity 28, 1257–1293 (2015)CrossRefMATHMathSciNet
24.
go back to reference Frigeri, S., Grasselli, M., Rocca, E.: On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 26, 215–243 (2015)CrossRef Frigeri, S., Grasselli, M., Rocca, E.: On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 26, 215–243 (2015)CrossRef
25.
go back to reference Frigeri, S., Gal, C.G., Grasselli, M.: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26, 847–893 (2016)CrossRefMATHMathSciNet Frigeri, S., Gal, C.G., Grasselli, M.: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26, 847–893 (2016)CrossRefMATHMathSciNet
27.
go back to reference Gal, C.G., Grasselli, M.: Longtime behavior of nonlocal Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 34, 145–179 (2014)CrossRefMATHMathSciNet Gal, C.G., Grasselli, M.: Longtime behavior of nonlocal Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 34, 145–179 (2014)CrossRefMATHMathSciNet
28.
go back to reference Gal, C.G., Giorgini, A., Grasselli, M.: The nonlocal Cahn–Hilliard equation with singular potential: well-posedness, regularity and strict separation property. J. Differ. Equ. 263, 5253–5297 (2017)CrossRefMathSciNet Gal, C.G., Giorgini, A., Grasselli, M.: The nonlocal Cahn–Hilliard equation with singular potential: well-posedness, regularity and strict separation property. J. Differ. Equ. 263, 5253–5297 (2017)CrossRefMathSciNet
29.
go back to reference Garcke, H., Lam, K.F.: Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Math. 1, 318–360 (2016)CrossRef Garcke, H., Lam, K.F.: Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Math. 1, 318–360 (2016)CrossRef
30.
go back to reference Garcke, H., Lam, K.F.: On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms. Preprint arXiv:1611.00234 (2016) Garcke, H., Lam, K.F.: On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms. Preprint arXiv:1611.00234 (2016)
31.
go back to reference Garcke, H., Lam, K.F.: Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete Contin. Dyn. Syst. 37, 4277–4308 (2017)CrossRefMATHMathSciNet Garcke, H., Lam, K.F.: Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete Contin. Dyn. Syst. 37, 4277–4308 (2017)CrossRefMATHMathSciNet
32.
go back to reference Garcke, H., Lam, K.F.: Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28, 284–316 (2017)CrossRefMathSciNet Garcke, H., Lam, K.F.: Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28, 284–316 (2017)CrossRefMathSciNet
33.
go back to reference Garcke, H., Lam, K.F., Sitka, E., Styles, V.: A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26, 1095–1148 (2016)CrossRefMATHMathSciNet Garcke, H., Lam, K.F., Sitka, E., Styles, V.: A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26, 1095–1148 (2016)CrossRefMATHMathSciNet
34.
go back to reference Garcke, H., Lam, K.F., Nürnberg, R., Sitka, E.: A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Preprint arXiv:1701.06656 (2017) Garcke, H., Lam, K.F., Nürnberg, R., Sitka, E.: A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Preprint arXiv:1701.06656 (2017)
35.
go back to reference Gerisch, A., Chaplain, M.A.J.: Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250, 684–704 (2008)CrossRefMathSciNet Gerisch, A., Chaplain, M.A.J.: Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250, 684–704 (2008)CrossRefMathSciNet
36.
go back to reference Giacomin, G., Lebowitz, J.: Phase segregation dynamics in particle systems with long range interactions II: interface motion. SIAM J. Appl. Math. 58, 1707–1729 (1998)CrossRefMATHMathSciNet Giacomin, G., Lebowitz, J.: Phase segregation dynamics in particle systems with long range interactions II: interface motion. SIAM J. Appl. Math. 58, 1707–1729 (1998)CrossRefMATHMathSciNet
37.
go back to reference Hawkins-Daarud, A., van der Zee, K.G., Oden, J.T.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 28, 3–24 (2012)CrossRefMATHMathSciNet Hawkins-Daarud, A., van der Zee, K.G., Oden, J.T.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 28, 3–24 (2012)CrossRefMATHMathSciNet
38.
go back to reference Hilhorst, D., Kampmann, J., Nguyen, T.N., van der Zee, K.G.: Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Methods Appl. Sci. 25, 1011–1043 (2015)CrossRefMATHMathSciNet Hilhorst, D., Kampmann, J., Nguyen, T.N., van der Zee, K.G.: Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Methods Appl. Sci. 25, 1011–1043 (2015)CrossRefMATHMathSciNet
39.
go back to reference Jiang, J., Wu, H., Zheng, S.: Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth. J. Differ. Equ. 259, 3032–3077 (2015)CrossRefMATHMathSciNet Jiang, J., Wu, H., Zheng, S.: Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth. J. Differ. Equ. 259, 3032–3077 (2015)CrossRefMATHMathSciNet
40.
go back to reference Lam, K.F., Wu, H.: Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis. Preprint arXiv:1702.06014 (2017) Lam, K.F., Wu, H.: Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis. Preprint arXiv:1702.06014 (2017)
41.
go back to reference Lee, C.T., Hoopes, M.F., Diehl, J., Gilliland, W., Huxel, G., Leaver, E.V., McCann, K., Umbanhowar, J., Mogilner, A.: Non-local concepts and models in biology. J. Theor. Biol. 210, 201–219 (2001)CrossRef Lee, C.T., Hoopes, M.F., Diehl, J., Gilliland, W., Huxel, G., Leaver, E.V., McCann, K., Umbanhowar, J., Mogilner, A.: Non-local concepts and models in biology. J. Theor. Biol. 210, 201–219 (2001)CrossRef
42.
go back to reference Melchionna, S., Rocca, E.: On a nonlocal Cahn–Hilliard equation with a reaction term. Adv. Math. Sci. Appl. 24, 461–497 (2014)MATHMathSciNet Melchionna, S., Rocca, E.: On a nonlocal Cahn–Hilliard equation with a reaction term. Adv. Math. Sci. Appl. 24, 461–497 (2014)MATHMathSciNet
43.
go back to reference Miranville, A.: Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation term. Appl. Anal. 92, 1308–1321 (2013)CrossRefMATHMathSciNet Miranville, A.: Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation term. Appl. Anal. 92, 1308–1321 (2013)CrossRefMATHMathSciNet
44.
go back to reference Novick-Cohen, A.: The Cahn–Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8, 965–985 (1998)MATHMathSciNet Novick-Cohen, A.: The Cahn–Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8, 965–985 (1998)MATHMathSciNet
45.
go back to reference Novick-Cohen, A.: The Cahn–Hilliard equation. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations: Evolution Equations, vol. 4, pp. 201–228. North Holland, Amsterdam (2008) Novick-Cohen, A.: The Cahn–Hilliard equation. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations: Evolution Equations, vol. 4, pp. 201–228. North Holland, Amsterdam (2008)
46.
go back to reference Simon J.: Compact sets in space L p (0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1986) Simon J.: Compact sets in space L p (0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1986)
47.
go back to reference Szymańska, Z., Rodrigo, C.M., Lachowicz, M., Chaplain, M.A.J.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009)CrossRefMATHMathSciNet Szymańska, Z., Rodrigo, C.M., Lachowicz, M., Chaplain, M.A.J.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009)CrossRefMATHMathSciNet
48.
go back to reference Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth – I: model and numerical method. J. Theor. Biol. 253, 524–543 (2008)CrossRefMathSciNet Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth – I: model and numerical method. J. Theor. Biol. 253, 524–543 (2008)CrossRefMathSciNet
Metadata
Title
On a Diffuse Interface Model for Tumour Growth with Non-local Interactions and Degenerate Mobilities
Authors
Sergio Frigeri
Kei Fong Lam
Elisabetta Rocca
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-64489-9_9

Premium Partner