Skip to main content
Top

2024 | OriginalPaper | Chapter

4. On Algebraic Algebras Without Divisors of Zero Satisfying \((x^p, x^q, x^r)=0\)

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \(\mathcal {A}\) be an algebraic algebra without divisors of zero of degree \(\neq 8\) with a nonzero idempotent e such that \([e, I(\mathcal {A})]=0\) (resp., e is omnipresent). Then the following assertions are equivalent:
(1)
\(\mathcal {A}\) is quadratic with unit \(e.\)
 
(2)
\(\mathcal {A}\) is power associative.
 
(3)
\(\mathcal {A}\) satisfies \((x, x^q, x^r)=0\) and e is a generalized left unit.
 
(4)
\(\mathcal {A}\) satisfies \((x^p, x^q, x)=0\) and e is a generalized right unit.
 
(5)
\(\mathcal {A}\) satisfies \((x^p, x^q, x^r)=0\) and e is a generalized unit.
 

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference S. C. Althoen and L. D. Kugler, When is\(\mathbb {R}^2\)a division algebra? Amer. Math. Monthly 90, (1983) 625–635.MathSciNet S. C. Althoen and L. D. Kugler, When is\(\mathbb {R}^2\)a division algebra? Amer. Math. Monthly 90, (1983) 625–635.MathSciNet
3.
go back to reference G. M. Benkart, D. J. Britten, and J. M. Osborn, On applications of isotopy to real division algebras. Hadronic J. 4 (1981), 497–529.MathSciNet G. M. Benkart, D. J. Britten, and J. M. Osborn, On applications of isotopy to real division algebras. Hadronic J. 4 (1981), 497–529.MathSciNet
4.
go back to reference G. M. Benkart, D. J. Britten, and J. M. Osborn, Real flexible division algebras. Canad. J. Math. 34 (1982), 550–588MathSciNetCrossRef G. M. Benkart, D. J. Britten, and J. M. Osborn, Real flexible division algebras. Canad. J. Math. 34 (1982), 550–588MathSciNetCrossRef
6.
go back to reference I. Burdujan, Types of nonisomorphic two-dimensional real division algebras. Proceedings of the national conference on algebra (Romanian), An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 31 (1985), suppl., 102–105. I. Burdujan, Types of nonisomorphic two-dimensional real division algebras. Proceedings of the national conference on algebra (Romanian), An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 31 (1985), suppl., 102–105.
7.
go back to reference M. Cabrera and A. Diouf, On power-associativity of algebras with no nonzero joint divisor of zero and containing a nonzero central idempotent. Commun. Algebra 52 (2024), 295–304MathSciNetCrossRef M. Cabrera and A. Diouf, On power-associativity of algebras with no nonzero joint divisor of zero and containing a nonzero central idempotent. Commun. Algebra 52 (2024), 295–304MathSciNetCrossRef
8.
go back to reference M. Cabrera and Á Rodríguez, Non-associative Normed Algebras Volume 1: The Vidav-Palmer and Gelfand- Naimark Theorems. Part of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 2014. M. Cabrera and Á Rodríguez, Non-associative Normed Algebras Volume 1: The Vidav-Palmer and Gelfand- Naimark Theorems. Part of Encyclopedia of Mathematics and Its Applications, Cambridge University Press, 2014.
9.
go back to reference A. Chandid and A. Rochdi, Mutations of absolute valued algebras. Int. J. Algebra, 2, (2008) 357–368.MathSciNet A. Chandid and A. Rochdi, Mutations of absolute valued algebras. Int. J. Algebra, 2, (2008) 357–368.MathSciNet
10.
go back to reference J. A. Cuenca, R. De Los Santos Villodres, A. Kaidi, and A. Rochdi, Real quadratic flexible division algebras. Linear Algebra Appl. 290, (1999) 1–22. J. A. Cuenca, R. De Los Santos Villodres, A. Kaidi, and A. Rochdi, Real quadratic flexible division algebras. Linear Algebra Appl. 290, (1999) 1–22.
11.
go back to reference E. Darpö, and A. Rochdi, Classification of the four-dimensional power-commutative real division algebras. Proceedings of the Royal Society of Edinburgh, 141 A, (2011) 1207–1223.MathSciNetCrossRef E. Darpö, and A. Rochdi, Classification of the four-dimensional power-commutative real division algebras. Proceedings of the Royal Society of Edinburgh, 141 A, (2011) 1207–1223.MathSciNetCrossRef
12.
go back to reference K. Diaby, O. Diankha, A. Fall, and A. Rochdi, On absolute-valued algebras satisfying\((x^2, y, x^2)=0.\) J. Algebra 585 (2021), 484–500. K. Diaby, O. Diankha, A. Fall, and A. Rochdi, On absolute-valued algebras satisfying\((x^2, y, x^2)=0.\) J. Algebra 585 (2021), 484–500.
13.
go back to reference O. Diankha, A. Diouf, M. Traoré and A. Rochdi, Division Algebras satisfying\((x^p x^q)x^r= x^p (x^qx^r)\). Int. J. Algebra 7(20), (2013) 959–972. O. Diankha, A. Diouf, M. Traoré and A. Rochdi, Division Algebras satisfying\((x^p x^q)x^r= x^p (x^qx^r)\). Int. J. Algebra 7(20), (2013) 959–972.
14.
go back to reference O. Diankha, M. Traoré, M. I. Ramirez and A. Rochdi, Four-Dimensional Real third-power Associative Division Algebras . Commun. Algebra 44, (2016) 3397–3406.MathSciNetCrossRef O. Diankha, M. Traoré, M. I. Ramirez and A. Rochdi, Four-Dimensional Real third-power Associative Division Algebras . Commun. Algebra 44, (2016) 3397–3406.MathSciNetCrossRef
16.
go back to reference E. Dieterich, Quadratic division algebras revisited. Proceedings of the American Mathematical Society, 128 (11) (2000), 3159–3166.MathSciNetCrossRef E. Dieterich, Quadratic division algebras revisited. Proceedings of the American Mathematical Society, 128 (11) (2000), 3159–3166.MathSciNetCrossRef
17.
go back to reference E. Dieterich, Classification, automorphism groups and categorical structure of the two-dimensional real division algebras. J. Algebra Appl., 4 (2005), 517–538.MathSciNetCrossRef E. Dieterich, Classification, automorphism groups and categorical structure of the two-dimensional real division algebras. J. Algebra Appl., 4 (2005), 517–538.MathSciNetCrossRef
18.
go back to reference F. G. Frobenius, Über lineare substitutionen und bilineare formen. J. Reine Angew. Math. 84 (1878), 1–63.MathSciNet F. G. Frobenius, Über lineare substitutionen und bilineare formen. J. Reine Angew. Math. 84 (1878), 1–63.MathSciNet
19.
go back to reference E. Gottschling, Die zweidimensionalen reellen Divisionsalgebren, Seminarber. Fachb. Math. FernUniversitat-GHS in Hagen 63 (1998), 228–261. E. Gottschling, Die zweidimensionalen reellen Divisionsalgebren, Seminarber. Fachb. Math. FernUniversitat-GHS in Hagen 63 (1998), 228–261.
20.
go back to reference F. Hirzebruch, M. Koecher and R. Remmert, Numbers. Springer-Verlag, (1991). F. Hirzebruch, M. Koecher and R. Remmert, Numbers. Springer-Verlag, (1991).
21.
go back to reference H. Hopf, Ein topologischer beitrag zur reellen algebra. Comment. Math. Helvet. (1940), 219–239. H. Hopf, Ein topologischer beitrag zur reellen algebra. Comment. Math. Helvet. (1940), 219–239.
22.
go back to reference M. Hübner and H. P. Petersson, Two-dimensional real division algebras revisited. Beiträge Algebra Geom., 45, (2004) 29–36.MathSciNet M. Hübner and H. P. Petersson, Two-dimensional real division algebras revisited. Beiträge Algebra Geom., 45, (2004) 29–36.MathSciNet
23.
go back to reference M. Kervaire, Non-parallelizability of the n-sphere for\(n> 7\). Proc. Nat. Acad. Sci. USA 44 (1958), 280–283. M. Kervaire, Non-parallelizability of the n-sphere for\(n> 7\). Proc. Nat. Acad. Sci. USA 44 (1958), 280–283.
24.
25.
go back to reference M. I. Ramírez, On four-dimensional absolute valued algebras, in Proceedings of the International Conference on Jordan (Málaga, 1997), University of Málaga, Málaga, 1999, pp. 169–173. M. I. Ramírez, On four-dimensional absolute valued algebras, in Proceedings of the International Conference on Jordan (Málaga, 1997), University of Málaga, Málaga, 1999, pp. 169–173.
26.
go back to reference A. Rodríguez, Absolute valued algebras, and absolute valuable Banach spaces. Advanced courses of mathematical analysis I, 99–155, World Sci. Publ., Hackensack, NJ, (2004). A. Rodríguez, Absolute valued algebras, and absolute valuable Banach spaces. Advanced courses of mathematical analysis I, 99–155, World Sci. Publ., Hackensack, NJ, (2004).
27.
go back to reference R. D. Schafer, An introduction to nonassociative algebras. Academic Press, New York (1966). R. D. Schafer, An introduction to nonassociative algebras. Academic Press, New York (1966).
28.
go back to reference B. Segre, La teoria delle algebre ed alcune questione di realta. Univ. Roma, Ist. Naz. Alta. Mat., Rend. Mat. E App. Serie 5 13 (1954) 157–188. B. Segre, La teoria delle algebre ed alcune questione di realta. Univ. Roma, Ist. Naz. Alta. Mat., Rend. Mat. E App. Serie 5 13 (1954) 157–188.
29.
go back to reference J. Petro, Real division algebras of dimension\(>1\)contain\(\mathbb {C}.\) Amer. Math. Monthly, 94 (1987), 445–449. J. Petro, Real division algebras of dimension\(>1\)contain\(\mathbb {C}.\) Amer. Math. Monthly, 94 (1987), 445–449.
30.
go back to reference C. T. Yang, Division algebras and fibrations of spheres by great spheres. J. Differential Geometry, 16 (1981), 577–593.MathSciNetCrossRef C. T. Yang, Division algebras and fibrations of spheres by great spheres. J. Differential Geometry, 16 (1981), 577–593.MathSciNetCrossRef
Metadata
Title
On Algebraic Algebras Without Divisors of Zero Satisfying
Authors
Mohamed Traoré
Alassane Diouf
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-66222-5_4

Premium Partner