Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-11-2017 | Issue 3/2018

Journal of Scientific Computing 3/2018

On an New Algorithm for Function Approximation with Full Accuracy in the Presence of Discontinuities Based on the Immersed Interface Method

Journal:
Journal of Scientific Computing > Issue 3/2018
Authors:
Sergio Amat, Zhilin Li, Juan Ruiz
Important notes
Sergio Amat has been supported through the Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI714 and through the national research Project MTM2015-64382-P (MINECO/FEDER). Zhilin Li has been partially supported supported by the NSF Grant DMS-1522768. Juan Ruiz has been supported through the Programa de Apoyo a la investigación de la fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia 19374/PI714, through the national research Project MTM2015-64382-P (MINECO/FEDER) and by the Fundación Seneca through the young researchers program Jiménez de la Espada.

Abstract

This paper is devoted to the construction and analysis of an adapted and nonlinear multiresolution algorithm designed for interpolation or approximation of discontinuous univariate functions. The adaption attained allows to avoid numerical artifacts that appear when using linear algorithms and, at the same time, to obtain a high order of accuracy close to the singularities. It is known that linear algorithms are stable and convergent for smooth functions, but diffusion and Gibbs effect appear if the functions are piecewise continuous. Our aim is to develop an algorithm for function approximation with full accuracy that is capable to adapt to corners (kinks) and jump discontinuities, that uses a centered stencil and that does not use extrapolation. In order to reach this goal, we will need some information about the jumps in the function that we want to approximate and its derivatives. If this information is available, the algorithm is the most compact possible in the sense that the stencil is fixed and we do not need a stencil selection procedure as other algorithms do, such as ENO subcell resolution (ENO-SR). If the information about the jumps is not available, we will show a technique to approximate it. The algorithm is based on linear interpolation plus correction terms that provide the desired accuracy close to corners or jump discontinuities.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2018

Journal of Scientific Computing 3/2018 Go to the issue

Premium Partner

    Image Credits