Skip to main content
Top

2024 | OriginalPaper | Chapter

On Bounding and Approximating Functions of Multiple Expectations Using Quasi-Monte Carlo

Authors : Aleksei G. Sorokin, Jagadeeswaran Rathinavel

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Monte Carlo and Quasi-Monte Carlo methods present a convenient approach for approximating the expected value of a random variable. Algorithms exist to adaptively sample the random variable until a user defined absolute error tolerance is satisfied with high probability. This work describes an extension of such methods which supports adaptive sampling to satisfy general error criteria for functions of a common array of expectations. Although several functions involving multiple expectations are being evaluated, only one random sequence is required, albeit sometimes of larger dimension than the underlying randomness. These enhanced Monte Carlo and Quasi-Monte Carlo algorithms are implemented in the QMCPy Python package with support for economic and parallel function evaluation. We exemplify these capabilities on problems from machine learning and global sensitivity analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alex Mara, T., Rakoto Joseph, O.: Comparison of some efficient methods to evaluate the main effect of computer model factors. J. Stat. Comput. Simul. 78(2), 167–178 (2008)MathSciNetCrossRef Alex Mara, T., Rakoto Joseph, O.: Comparison of some efficient methods to evaluate the main effect of computer model factors. J. Stat. Comput. Simul. 78(2), 167–178 (2008)MathSciNetCrossRef
2.
go back to reference Boole, G.: The mathematical analysis of logic. Philos. Libr. (1847) Boole, G.: The mathematical analysis of logic. Philos. Libr. (1847)
5.
go back to reference Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.G.: Quasi-Monte Carlo software. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo methods, pp. 23–47. Springer International Publishing, Cham (2022)CrossRef Choi, S.C.T., Hickernell, F.J., Jagadeeswaran, R., McCourt, M.J., Sorokin, A.G.: Quasi-Monte Carlo software. In: Keller, A. (ed.) Monte Carlo and Quasi-Monte Carlo methods, pp. 23–47. Springer International Publishing, Cham (2022)CrossRef
6.
go back to reference Crestaux, T., Martinez, J., Le Maitre, J., Lafitte, O.: Polynomial chaos expansion for uncertainties quantification and sensitivity analysis [powerpoint slides]. Retrieved from SAMO 2007 (2007) Crestaux, T., Martinez, J., Le Maitre, J., Lafitte, O.: Polynomial chaos expansion for uncertainties quantification and sensitivity analysis [powerpoint slides]. Retrieved from SAMO 2007 (2007)
7.
go back to reference Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)MathSciNetCrossRef Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)MathSciNetCrossRef
10.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015) He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)
11.
12.
go back to reference Hickernell, F.J., Jiang, L., Liu, Y., Owen, A.: Guaranteed conservative fixed width confidence intervals via Monte Carlo sampling (2012) Hickernell, F.J., Jiang, L., Liu, Y., Owen, A.: Guaranteed conservative fixed width confidence intervals via Monte Carlo sampling (2012)
13.
go back to reference Hickernell, F.J.: Jiménez Rugama. Reliable adaptive cubature using digital sequences, L.A. (2014) Hickernell, F.J.: Jiménez Rugama. Reliable adaptive cubature using digital sequences, L.A. (2014)
14.
go back to reference Hickernell, F.J., Jiménez Rugama, L.A., Li, D.: Adaptive quasi-Monte Carlo methods for cubature. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, pp. 597–619. Springer, Berlin (2018) Hickernell, F.J., Jiménez Rugama, L.A., Li, D.: Adaptive quasi-Monte Carlo methods for cubature. In: Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, pp. 597–619. Springer, Berlin (2018)
15.
go back to reference Hoyt, C., Owen, A.B.: Efficient estimation of the ANOVA mean dimension, with an application to neural net classification. SIAM/ASA J. Uncertain. Quantif. 9(2), 708–730 (2021)MathSciNetCrossRef Hoyt, C., Owen, A.B.: Efficient estimation of the ANOVA mean dimension, with an application to neural net classification. SIAM/ASA J. Uncertain. Quantif. 9(2), 708–730 (2021)MathSciNetCrossRef
16.
go back to reference Ishigami, T., Homma, T.: An importance quantification technique in uncertainty analysis for computer models. In: [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis, pp. 398–403. IEEE (1990) Ishigami, T., Homma, T.: An importance quantification technique in uncertainty analysis for computer models. In: [1990] Proceedings. First International Symposium on Uncertainty Modeling and Analysis, pp. 398–403. IEEE (1990)
17.
go back to reference Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using Sobol’ sampling. In: Advances in Modeling and Simulation: Festschrift for Pierre L’Ecuyer, pp. 301–318. Springer, Berlin (2022) Jagadeeswaran, R., Hickernell, F.J.: Fast automatic Bayesian cubature using Sobol’ sampling. In: Advances in Modeling and Simulation: Festschrift for Pierre L’Ecuyer, pp. 301–318. Springer, Berlin (2022)
19.
go back to reference Jiménez Rugama, L.A., Hickernell, F.J.: Adaptive multidimensional integration based on rank-1 lattices (2014) Jiménez Rugama, L.A., Hickernell, F.J.: Adaptive multidimensional integration based on rank-1 lattices (2014)
20.
go back to reference Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of Sobol’ indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94(3), 742–751 (2009)CrossRef Marrel, A., Iooss, B., Laurent, B., Roustant, O.: Calculations of Sobol’ indices for the Gaussian process metamodel. Reliab. Eng. Syst. Saf. 94(3), 742–751 (2009)CrossRef
21.
go back to reference Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM (2009) Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. SIAM (2009)
22.
go back to reference Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. SIAM (1992) Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. SIAM (1992)
24.
go back to reference Rasmussen, C.E., Williams, C.K., et al.: Gaussian processes for machine learning, vol. 1. Springer, Berlin (2006) Rasmussen, C.E., Williams, C.K., et al.: Gaussian processes for machine learning, vol. 1. Springer, Berlin (2006)
25.
go back to reference Rathinavel, J.: Fast automatic Bayesian cubature using matching kernels and designs. Ph.D. thesis, Illinois Institute of Technology, Chicago (2019). www.math.iit.edu Rathinavel, J.: Fast automatic Bayesian cubature using matching kernels and designs. Ph.D. thesis, Illinois Institute of Technology, Chicago (2019). www.​math.​iit.​edu
27.
go back to reference Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 25 (2012) Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 25 (2012)
29.
go back to reference Tissot, J.Y., Prieur, C.: A randomized orthogonal array-based procedure for the estimation of first-and second-order Sobol’ indices. J. Stat. Comput. Simul. 85(7), 1358–1381 (2015)MathSciNetCrossRef Tissot, J.Y., Prieur, C.: A randomized orthogonal array-based procedure for the estimation of first-and second-order Sobol’ indices. J. Stat. Comput. Simul. 85(7), 1358–1381 (2015)MathSciNetCrossRef
Metadata
Title
On Bounding and Approximating Functions of Multiple Expectations Using Quasi-Monte Carlo
Authors
Aleksei G. Sorokin
Jagadeeswaran Rathinavel
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_29

Premium Partner