Skip to main content
Top
Published in: Designs, Codes and Cryptography 6/2021

06-04-2021

On certain self-orthogonal AG codes with applications to Quantum error-correcting codes

Authors: Daniele Bartoli, Maria Montanucci, Giovanni Zini

Published in: Designs, Codes and Cryptography | Issue 6/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper a construction of quantum codes from self-orthogonal algebraic geometry codes is provided. Our method is based on the CSS construction as well as on some peculiar properties of the underlying algebraic curves, named Swiss curves. Several classes of well-known algebraic curves with many rational points turn out to be Swiss curves. Examples are given by Castle curves, GK curves, generalized GK curves and the Abdón–Bezerra–Quoos maximal curves. Applications of our method to these curves are provided. Our construction extends a previous one due to Hernando, McGuire, Monserrat, and Moyano-Fernández.
Literature
1.
go back to reference Abdón M., Bezerra J., Quoos L.: Further examples of maximal curves. J. Pure Appl. Algebra 213, 1192–1196 (2009).MathSciNetCrossRef Abdón M., Bezerra J., Quoos L.: Further examples of maximal curves. J. Pure Appl. Algebra 213, 1192–1196 (2009).MathSciNetCrossRef
2.
go back to reference Bartoli D., Montanucci M., Zini G.: AG codes and AG quantum codes from the GGS curve. Des. Codes Cryptogr. 86, 2315–2344 (2018).MathSciNetCrossRef Bartoli D., Montanucci M., Zini G.: AG codes and AG quantum codes from the GGS curve. Des. Codes Cryptogr. 86, 2315–2344 (2018).MathSciNetCrossRef
3.
go back to reference Bartoli D., Giulietti M., Kawakita M., Montanucci M.: New examples of maximal curves with low genus. Finite Fields Appl. 68, 101744 (2020).MathSciNetCrossRef Bartoli D., Giulietti M., Kawakita M., Montanucci M.: New examples of maximal curves with low genus. Finite Fields Appl. 68, 101744 (2020).MathSciNetCrossRef
5.
go back to reference Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).CrossRef Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996).CrossRef
6.
go back to reference Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997).MathSciNetCrossRef Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997).MathSciNetCrossRef
7.
go back to reference Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).MathSciNetCrossRef Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998).MathSciNetCrossRef
8.
go back to reference Chen H.: Some good quantum error-correcting codes from algebraic geometry codes. IEEE Trans. Inf. Theory 47, 2059–2061 (2001).CrossRef Chen H.: Some good quantum error-correcting codes from algebraic geometry codes. IEEE Trans. Inf. Theory 47, 2059–2061 (2001).CrossRef
9.
go back to reference Feng K., Ma Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004).MathSciNetCrossRef Feng K., Ma Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004).MathSciNetCrossRef
10.
go back to reference Galindo C., Hernando F.: Quantum codes from affine variety codes and their subfield-subcodes. Des. Codes Cryptogr. 76, 89–100 (2015).MathSciNetCrossRef Galindo C., Hernando F.: Quantum codes from affine variety codes and their subfield-subcodes. Des. Codes Cryptogr. 76, 89–100 (2015).MathSciNetCrossRef
11.
12.
go back to reference Garcia A., Güneri C., Stichtenoth H.: A generalization of the Giulietti–Korchmáros maximal curve. Adv. Geom. 10(3), 427–434 (2010).MathSciNetCrossRef Garcia A., Güneri C., Stichtenoth H.: A generalization of the Giulietti–Korchmáros maximal curve. Adv. Geom. 10(3), 427–434 (2010).MathSciNetCrossRef
13.
go back to reference Giulietti M., Korchmáros G.: A new family of maximal curves over a finite field. Math. Ann. 343(1), 229–245 (2009).MathSciNetCrossRef Giulietti M., Korchmáros G.: A new family of maximal curves over a finite field. Math. Ann. 343(1), 229–245 (2009).MathSciNetCrossRef
14.
go back to reference Goppa V.D.: Algebraic-geometric codes. Izv. Akad. Nauk SSSR Ser. Mat. 46(4), 762–781 (1982). (in Russian).MathSciNet Goppa V.D.: Algebraic-geometric codes. Izv. Akad. Nauk SSSR Ser. Mat. 46(4), 762–781 (1982). (in Russian).MathSciNet
15.
go back to reference Gottesman D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862–1868 (1996).MathSciNetCrossRef Gottesman D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54(3), 1862–1868 (1996).MathSciNetCrossRef
16.
go back to reference Grassl M., Rötteler M., Beth T.: Efficient quantum circuits for non-qubit quantum error-correcting codes. Int. J. Found. Comput. Sci. 14(5), 757–775 (2003).MathSciNetCrossRef Grassl M., Rötteler M., Beth T.: Efficient quantum circuits for non-qubit quantum error-correcting codes. Int. J. Found. Comput. Sci. 14(5), 757–775 (2003).MathSciNetCrossRef
17.
go back to reference Grassl M., Rötteler M.: Quantum MDS codes over small fields. In: IEEE International Symposium on Information Theory—Proceedings, pp. 1104–1108 (2015). Grassl M., Rötteler M.: Quantum MDS codes over small fields. In: IEEE International Symposium on Information Theory—Proceedings, pp. 1104–1108 (2015).
18.
go back to reference Grover L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 212–219. ACM, New York (1996). Grover L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pp. 212–219. ACM, New York (1996).
19.
go back to reference Hernando F., McGuire G., Monserrat F., Moyano-Fernández J.J.: Quantum codes from a new construction of self-orthogonal algebraic geometry codes. Quantum Inf. Process. 19, 117 (2020).MathSciNetCrossRef Hernando F., McGuire G., Monserrat F., Moyano-Fernández J.J.: Quantum codes from a new construction of self-orthogonal algebraic geometry codes. Quantum Inf. Process. 19, 117 (2020).MathSciNetCrossRef
20.
go back to reference Hirschfeld J.W.P., Korchmáros G., Torres F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008). Hirschfeld J.W.P., Korchmáros G., Torres F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008).
21.
go back to reference Høholdt T., van Lint J., Pellikaan R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998). Høholdt T., van Lint J., Pellikaan R.: Algebraic geometry codes. In: Handbook of Coding Theory, vol. 1, pp. 871–961. Elsevier, Amsterdam (1998).
22.
go back to reference Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4924 (2006).MathSciNetCrossRef Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4924 (2006).MathSciNetCrossRef
23.
go back to reference Klappenecker A., Sarvepalli P.K.: Nonbinary quantum codes from Hermitian curves. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 136–143. Lecture Notes in Computer Science, vol. 3857, Springer, Berlin (2006). Klappenecker A., Sarvepalli P.K.: Nonbinary quantum codes from Hermitian curves. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pp. 136–143. Lecture Notes in Computer Science, vol. 3857, Springer, Berlin (2006).
25.
go back to reference Jin L., Xing C.P.: Euclidean and Hermitian self-orthogonal Algebraic Geometry codes and their application to Quantum codes. IEEE Trans. Inf. Theory 58, 5484–5489 (2012).MathSciNetCrossRef Jin L., Xing C.P.: Euclidean and Hermitian self-orthogonal Algebraic Geometry codes and their application to Quantum codes. IEEE Trans. Inf. Theory 58, 5484–5489 (2012).MathSciNetCrossRef
26.
go back to reference Kim J., Mathews G.L.: Quantum error-correcting codes from algebraic curves. In: Martinez E., Munuera C., Ruano D. (eds.) Adv. Algebraic Geom. Codes, pp. 419–444. World Scientific, Hackensack (2008).CrossRef Kim J., Mathews G.L.: Quantum error-correcting codes from algebraic curves. In: Martinez E., Munuera C., Ruano D. (eds.) Adv. Algebraic Geom. Codes, pp. 419–444. World Scientific, Hackensack (2008).CrossRef
27.
go back to reference Kim J., Walker J.: Nonbinary quantum error-correcting cods from algebraic curves. Discret. Math. 308, 3115–3124 (2008).CrossRef Kim J., Walker J.: Nonbinary quantum error-correcting cods from algebraic curves. Discret. Math. 308, 3115–3124 (2008).CrossRef
29.
go back to reference Montanucci M., Pallozzi Lavorante V.: AG codes from the second generalization of the GK maximal curve. Discret. Math. 343(5), 101810 (2020).MathSciNetCrossRef Montanucci M., Pallozzi Lavorante V.: AG codes from the second generalization of the GK maximal curve. Discret. Math. 343(5), 101810 (2020).MathSciNetCrossRef
30.
go back to reference Montanucci M., Speziali P.: The \(a\)-numbers of Fermat and Hurwitz curves. J. Pure Appl. Algebra 222(2), 477–488 (2018).MathSciNetCrossRef Montanucci M., Speziali P.: The \(a\)-numbers of Fermat and Hurwitz curves. J. Pure Appl. Algebra 222(2), 477–488 (2018).MathSciNetCrossRef
33.
go back to reference Munuera C., Tenório W., Torres F.: Quantum error-correcting codes from algebraic geometry codes of Castle Type. Quantum Inf. Process. 15, 4071–4088 (2016).MathSciNetCrossRef Munuera C., Tenório W., Torres F.: Quantum error-correcting codes from algebraic geometry codes of Castle Type. Quantum Inf. Process. 15, 4071–4088 (2016).MathSciNetCrossRef
34.
go back to reference Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000).MATH Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000).MATH
35.
go back to reference Ouyang Y.: Permutation-invariant quantum codes. Phys. Rev. A 90(6), 062317 (2014).CrossRef Ouyang Y.: Permutation-invariant quantum codes. Phys. Rev. A 90(6), 062317 (2014).CrossRef
36.
go back to reference Ouyang Y.: Concatenated quantum codes can attain the quantum Gilbert–Varshamov bound. IEEE Trans. Inf. Theory 60(6), 3117–3122 (2014).MathSciNetCrossRef Ouyang Y.: Concatenated quantum codes can attain the quantum Gilbert–Varshamov bound. IEEE Trans. Inf. Theory 60(6), 3117–3122 (2014).MathSciNetCrossRef
37.
38.
go back to reference Ouyang Y., Chao R.: Permutation-invariant constant-excitation quantum codes for amplitude damping. IEEE Trans. Inf. Theory 66(5), 2921–2933 (2020).MathSciNetCrossRef Ouyang Y., Chao R.: Permutation-invariant constant-excitation quantum codes for amplitude damping. IEEE Trans. Inf. Theory 66(5), 2921–2933 (2020).MathSciNetCrossRef
39.
go back to reference Pellikaan R., Shen B.Z., van Wee G.J.M.: Which linear codes are Algebraic-Geometric. IEEE Trans. Inf. Theory 37, 583–602 (1991).MathSciNetCrossRef Pellikaan R., Shen B.Z., van Wee G.J.M.: Which linear codes are Algebraic-Geometric. IEEE Trans. Inf. Theory 37, 583–602 (1991).MathSciNetCrossRef
40.
go back to reference Ruskai M.B.: Pauli Exchange Errors in Quantum Computation. Phys. Rev. Lett. 85(1), 194–197 (2000).CrossRef Ruskai M.B.: Pauli Exchange Errors in Quantum Computation. Phys. Rev. Lett. 85(1), 194–197 (2000).CrossRef
41.
go back to reference Shaska T.: Quantum codes from algebraic curves with automorphisms. Condens. Matter Phys. 11, 383–396 (2008).CrossRef Shaska T.: Quantum codes from algebraic curves with automorphisms. Condens. Matter Phys. 11, 383–396 (2008).CrossRef
42.
go back to reference Shor P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM), pp. 124–134. IEEE Comput. Soc. Press, Los Alamitos (1994). Shor P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM), pp. 124–134. IEEE Comput. Soc. Press, Los Alamitos (1994).
43.
go back to reference Shor P.W., Smith G., Smolin J.A., Zeng B.: High performance single-error-correcting quantum codes for amplitude damping. IEEE Trans. Inf. Theory 57(10), 7180–7188 (2011).MathSciNetCrossRef Shor P.W., Smith G., Smolin J.A., Zeng B.: High performance single-error-correcting quantum codes for amplitude damping. IEEE Trans. Inf. Theory 57(10), 7180–7188 (2011).MathSciNetCrossRef
44.
go back to reference Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2557 (1996).MathSciNetCrossRef Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2557 (1996).MathSciNetCrossRef
46.
go back to reference Stichtenoth H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009). Stichtenoth H.: Algebraic Function Fields and Codes. Graduate Texts in Mathematics, vol. 254. Springer, Berlin (2009).
47.
go back to reference Tsfasman M.A., Vlăduţ S.G., Zink T.: Modular curves, Shimura curves and AG codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982).MathSciNetCrossRef Tsfasman M.A., Vlăduţ S.G., Zink T.: Modular curves, Shimura curves and AG codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982).MathSciNetCrossRef
Metadata
Title
On certain self-orthogonal AG codes with applications to Quantum error-correcting codes
Authors
Daniele Bartoli
Maria Montanucci
Giovanni Zini
Publication date
06-04-2021
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 6/2021
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00870-y

Other articles of this Issue 6/2021

Designs, Codes and Cryptography 6/2021 Go to the issue

Premium Partner