Skip to main content
Top

2024 | OriginalPaper | Chapter

On Conformable Fractional Riesz Bounded \(\user2{ p} -\) Variation of Order \(- \user2{ \alpha }\)

Authors : Supriyadi Wibowo, Christiana Rini Indrati

Published in: Applied and Computational Mathematics

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, inspired by the concept of conformable fractional (CF) derivative of order \(\alpha\) with the definitions of Riesz bounded \(p -\) variation and Lipschitz continuous function, we introduce the new definitions of CF Riesz bounded variation and CF Lipschitz continuous function, respectively. Furthermore, we give some of its important properties and the relationships among those functions. In particular, the following chain of inclusions holds:
$$\rm{\mathbb{D}}^{\alpha} \left[ {a,b} \right] \subset \rm{{\mathbb{L}}{\mathbb{I}}{\mathbb{P}}}^{\alpha} \left[ {a,b} \right] \subset \rm{{\mathbb{B}}{\mathbb{V}}}^{\alpha,p} \left[ {a,b} \right] \subset \rm{{\mathbb{B}}{\mathbb{V}}}^{\alpha,q} \left[ {a,b} \right].$$
where \(\alpha \in \left( {0,} \right.\left. 1 \right]\) and \(p,q \in \left( {1,\infty } \right)\) where \(q < p\).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 72(6), 2859–2862 (2010)MathSciNetCrossRef Agarwal, R.P., Lakshmikantham, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. Theory Methods Appl. 72(6), 2859–2862 (2010)MathSciNetCrossRef
4.
go back to reference Almeida, R., Guzowska, M., Odzijewicz, T.: A remark on local fractional calculus and ordinary derivatives. Open Mathematics 14(1), 1122–1124 (2016)MathSciNetCrossRef Almeida, R., Guzowska, M., Odzijewicz, T.: A remark on local fractional calculus and ordinary derivatives. Open Mathematics 14(1), 1122–1124 (2016)MathSciNetCrossRef
5.
go back to reference Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13(1), 889–898 (2015)MathSciNetCrossRef Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13(1), 889–898 (2015)MathSciNetCrossRef
6.
go back to reference Azouz, F., Boucenna, D., Ben Makhlouf, A., Mchiri, L., Benchaabane, A.: Controllability of differential systems with the general conformable derivative. Complexity, pp. 1–11 (2021) Azouz, F., Boucenna, D., Ben Makhlouf, A., Mchiri, L., Benchaabane, A.: Controllability of differential systems with the general conformable derivative. Complexity, pp. 1–11 (2021)
7.
go back to reference Castillo, R.E., Guzmán, O.M., Rafeiro, H.: Variable exponent bounded variation spaces in the Riesz sense. Nonlinear Anal. 132, 173–182 (2016)MathSciNetCrossRef Castillo, R.E., Guzmán, O.M., Rafeiro, H.: Variable exponent bounded variation spaces in the Riesz sense. Nonlinear Anal. 132, 173–182 (2016)MathSciNetCrossRef
8.
go back to reference El-Ajou, A.: A modification to the conformable fractional calculus with some applications. Alex. Eng. J. 59(4), 2239–2249 (2020)CrossRef El-Ajou, A.: A modification to the conformable fractional calculus with some applications. Alex. Eng. J. 59(4), 2239–2249 (2020)CrossRef
10.
go back to reference Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRef Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)MathSciNetCrossRef
11.
go back to reference Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
12.
go back to reference Luchko, Y.: Operational method in fractional calculus. Fract. Calc. Appl. Anal 2(4), 463–488 (1999)MathSciNet Luchko, Y.: Operational method in fractional calculus. Fract. Calc. Appl. Anal 2(4), 463–488 (1999)MathSciNet
13.
go back to reference Reinwand, S.: Functions of Bounded Variation: Theory • Methods • Applications. Cuvillier Verlag, Göttingen (2021) Reinwand, S.: Functions of Bounded Variation: Theory • Methods • Applications. Cuvillier Verlag, Göttingen (2021)
15.
go back to reference Rosa, W., Weberszpil, J.: Dual conformable derivative: definition, simple properties and perspectives for applications. Chaos, Solitons Fractals 117, 137–141 (2018)MathSciNetCrossRef Rosa, W., Weberszpil, J.: Dual conformable derivative: definition, simple properties and perspectives for applications. Chaos, Solitons Fractals 117, 137–141 (2018)MathSciNetCrossRef
16.
17.
go back to reference Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers, vol. 2. Springer, Berlin (2013) Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers, vol. 2. Springer, Berlin (2013)
18.
go back to reference Valério, D., Machado, J.T., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fractional Calculus Appl. Anal. 17(2), 552–578 (2014)MathSciNetCrossRef Valério, D., Machado, J.T., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fractional Calculus Appl. Anal. 17(2), 552–578 (2014)MathSciNetCrossRef
19.
go back to reference Wiener, N.: The quadratic variation of a function and its fourier coefficients. J. Math. Phys. Massachusetts 3, 72–94 (1924)CrossRef Wiener, N.: The quadratic variation of a function and its fourier coefficients. J. Math. Phys. Massachusetts 3, 72–94 (1924)CrossRef
20.
go back to reference Yang, X.J., Machado, J.T., Hristov, J.: Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dyn. 84(1), 3–7 (2016)MathSciNetCrossRef Yang, X.J., Machado, J.T., Hristov, J.: Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. Nonlinear Dyn. 84(1), 3–7 (2016)MathSciNetCrossRef
21.
go back to reference Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54(3), 903–917 (2017)MathSciNetCrossRef Zhao, D., Luo, M.: General conformable fractional derivative and its physical interpretation. Calcolo 54(3), 903–917 (2017)MathSciNetCrossRef
22.
go back to reference Zhao, D., Pan, X., Luo, M.: A new framework for multivariate general conformable fractional calculus and potential applications. Physica A 510, 271–280 (2018)MathSciNetCrossRef Zhao, D., Pan, X., Luo, M.: A new framework for multivariate general conformable fractional calculus and potential applications. Physica A 510, 271–280 (2018)MathSciNetCrossRef
Metadata
Title
On Conformable Fractional Riesz Bounded Variation of Order
Authors
Supriyadi Wibowo
Christiana Rini Indrati
Copyright Year
2024
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-2136-8_27

Premium Partners