2021 | OriginalPaper | Chapter
Hint
Swipe to navigate through the chapters of this book
Published in:
Recent Innovations in Computing
With the development of modern machine learning-based techniques for accurate and efficient classification, the paradigm has shifted to automatic intelligent-based methods. The iris recognition systems constitute one of the most reliable human authentication infrastructures in contemporary computing applications. However, the vulnerability of these systems is a major challenge due to a variety of presentation attacks which degrades their reliability when adopted in real-life applications. Hence, to combat the iris presentation attacks, an additional process called as presentation attack detection mechanism is integrated within the iris recognition systems. In this paper, a review of the modern intelligent approaches for iris presentation attack detection (PAD) mechanisms is presented with a special focus on the data-driven approaches. The presented study shows that the machine learning-based approaches provides better classification accuracy as compared to conventional iris PAD techniques. However, one of the open research challenge is to design the robust intelligent iris PAD frameworks with cross-sensor and cross-database testing capabilities.
Please log in to get access to this content
To get access to this content you need the following product:
Advertisement
1.
go back to reference Bori, A., Galbally, J.: Anti-spoofing : Iris Risks of Biometric Spoofing, pp. 1–13. https://doi.org/10.1007/978-3-642-27733-7 Bori, A., Galbally, J.: Anti-spoofing : Iris Risks of Biometric Spoofing, pp. 1–13.
https://doi.org/10.1007/978-3-642-27733-7
2.
go back to reference Czajka, A., Bowyer, K.W.: Presentation attack detection for iris recognition: an assessment of the state-of-the-art. ACM Comput. Surv. 51(4). https://doi.org/10.1145/3232849 Czajka, A., Bowyer, K.W.: Presentation attack detection for iris recognition: an assessment of the state-of-the-art. ACM Comput. Surv.
51(4).
https://doi.org/10.1145/3232849
3.
go back to reference Czajka, A., Bowyer, K.W., Krumdick, M., Vidalmata, R.G.: Recognition of image-orientation-based Iris spoofing. IEEE Trans. Inf. Forensics Security 12(9), 2184–2196 (2017). https://doi.org/10.1109/TIFS.2017.2701332 CrossRef Czajka, A., Bowyer, K.W., Krumdick, M., Vidalmata, R.G.: Recognition of image-orientation-based Iris spoofing. IEEE Trans. Inf. Forensics Security
12(9), 2184–2196 (2017).
https://doi.org/10.1109/TIFS.2017.2701332
CrossRef
4.
go back to reference Fathy, W.S.A., Ali, H.S.: Entropy with local binary patterns for efficient iris liveness detection. Wireless Personal Commun. 102(3), 2331–2344 (2018). https://doi.org/10.1007/s11277-017-5089-z CrossRef Fathy, W.S.A., Ali, H.S.: Entropy with local binary patterns for efficient iris liveness detection. Wireless Personal Commun.
102(3), 2331–2344 (2018).
https://doi.org/10.1007/s11277-017-5089-z
CrossRef
5.
go back to reference Galbally, J., Julian, F., Cappelli, R.: Handbook of Biometric Anti-Spoofing (Second; S. Marcel, M. S. Nixon, J. Fierrez, & N. Evans, eds.). Springer (n.d.) Galbally, J., Julian, F., Cappelli, R.: Handbook of Biometric Anti-Spoofing (Second; S. Marcel, M. S. Nixon, J. Fierrez, & N. Evans, eds.). Springer (n.d.)
6.
go back to reference Jain, A.K., Flynn, P., Ross, A.A.: Handbook of Biometrics (A. K. Jain, P. Flynn, & A. A. Ross, eds.). Springer, London (2008) Jain, A.K., Flynn, P., Ross, A.A.: Handbook of Biometrics (A. K. Jain, P. Flynn, & A. A. Ross, eds.). Springer, London (2008)
7.
go back to reference Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004). https://doi.org/10.1109/TCSVT.2003.818349 CrossRef Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol.
14(1), 4–20 (2004).
https://doi.org/10.1109/TCSVT.2003.818349
CrossRef
8.
go back to reference Kaur, B.: Iris spoofing detection using discrete orthogonal moments. Multimedia Tools Appl. 79(9–10), 6623–6647 (2020). https://doi.org/10.1007/s11042-019-08281-x CrossRef Kaur, B.: Iris spoofing detection using discrete orthogonal moments. Multimedia Tools Appl.
79(9–10), 6623–6647 (2020).
https://doi.org/10.1007/s11042-019-08281-x
CrossRef
9.
go back to reference Kaur, B., Singh, S., Kumar, J.: Cross-sensor iris spoofing detection using orthogonal features. Comput. Electrical Eng. 73, 279–288 (2019). https://doi.org/10.1016/j.compeleceng.2018.12.002 CrossRef Kaur, B., Singh, S., Kumar, J.: Cross-sensor iris spoofing detection using orthogonal features. Comput. Electrical Eng.
73, 279–288 (2019).
https://doi.org/10.1016/j.compeleceng.2018.12.002
CrossRef
10.
go back to reference Kohli, N., Yadav, D., Vatsa, M., Singh, R., Noore, A.: Detecting Medley of Iris Spoofing Attacks using DESIST Naman Kohli (1994) Kohli, N., Yadav, D., Vatsa, M., Singh, R., Noore, A.: Detecting Medley of Iris Spoofing Attacks using DESIST Naman Kohli (1994)
11.
go back to reference Maltoni, D., Maio, D., Jain, A., Salil, P.: Handbook of Fingerprint Recognition (Second). Springer, London (2009) CrossRef Maltoni, D., Maio, D., Jain, A., Salil, P.: Handbook of Fingerprint Recognition (Second). Springer, London (2009)
CrossRef
12.
go back to reference Menotti, D., Chiachia, G., Pinto, A., Schwartz, W.R., Pedrini, H., Falc˜ao, A.X., Rocha, A.: Deep representations for Iris, Face, and Fingerprint. IEEE Trans. Information Forensics Security 10(4), 1–16 (2015). https://doi.org/10.1109/TIFS.2015.2398817 Menotti, D., Chiachia, G., Pinto, A., Schwartz, W.R., Pedrini, H., Falc˜ao, A.X., Rocha, A.: Deep representations for Iris, Face, and Fingerprint. IEEE Trans. Information Forensics Security
10(4), 1–16 (2015).
https://doi.org/10.1109/TIFS.2015.2398817
13.
go back to reference Raghavendra, R., Busch, C.: Robust scheme for iris presentation attack detection using multiscale binarized statistical image features. IEEE Trans. Information Forensics Security 10(4), 703–715 (2015). https://doi.org/10.1109/TIFS.2015.2400393 CrossRef Raghavendra, R., Busch, C.: Robust scheme for iris presentation attack detection using multiscale binarized statistical image features. IEEE Trans. Information Forensics Security
10(4), 703–715 (2015).
https://doi.org/10.1109/TIFS.2015.2400393
CrossRef
14.
go back to reference Rigas, I., Komogortsev, O.V.: Eye movement-driven defense against iris print-attacks. Pattern Recogn. Lett. 68, 316–326 (2015). https://doi.org/10.1016/j.patrec.2015.06.011 CrossRef Rigas, I., Komogortsev, O.V.: Eye movement-driven defense against iris print-attacks. Pattern Recogn. Lett.
68, 316–326 (2015).
https://doi.org/10.1016/j.patrec.2015.06.011
CrossRef
15.
go back to reference Ruiz-Albacete, V., Tome-Gonzalez, P., Alonso-Fernandez, F., Galbally, J., Fierrez, J., Ortega-Garcia, J.: Direct attacks using fake images in iris verification. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5372 LNCS, pp. 181–190 (2008). https://doi.org/10.1007/978-3-540-89991-4_19 Ruiz-Albacete, V., Tome-Gonzalez, P., Alonso-Fernandez, F., Galbally, J., Fierrez, J., Ortega-Garcia, J.: Direct attacks using fake images in iris verification. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5372 LNCS, pp. 181–190 (2008).
https://doi.org/10.1007/978-3-540-89991-4_19
16.
go back to reference Sansola, A.K.H.: Postmortem iris recognition and its application in human identification. ProQuest Dissertations and Theses, 70 (2015) Sansola, A.K.H.: Postmortem iris recognition and its application in human identification. ProQuest Dissertations and Theses, 70 (2015)
17.
go back to reference Thalheim, L., Krissler, J., Ziegler, P.: Biometric Access Protection Devices and their Programs Put to the Test, pp. 1–9 (2009) Thalheim, L., Krissler, J., Ziegler, P.: Biometric Access Protection Devices and their Programs Put to the Test, pp. 1–9 (2009)
18.
go back to reference Yambay, D., Becker, B., Kohli, N., Yadav, D., Czajka, A., Bowyer, K.W., Federico, N., et al.: LivDet Iris 2017 - Iris Liveness Detection Competition 2017, pp. 733–741 (2017) Yambay, D., Becker, B., Kohli, N., Yadav, D., Czajka, A., Bowyer, K.W., Federico, N., et al.: LivDet Iris 2017 - Iris Liveness Detection Competition 2017, pp. 733–741 (2017)
19.
go back to reference Yambay, D., Doyle, J.S., Bowyer, K.W., Czajka, A., Schuckers, S.: LivDet-Iris 2013 – Iris Liveness Detection Competition 2013 (2013) Yambay, D., Doyle, J.S., Bowyer, K.W., Czajka, A., Schuckers, S.: LivDet-Iris 2013 – Iris Liveness Detection Competition 2013 (2013)
20.
go back to reference Yambay, D., Walczak, B., Schuckers, S., Czajka, A.: LivDet-Iris 2015 – Iris Liveness Detection Competition 2015, pp. 1–6 (2017). https://doi.org/10.1109/ISBA.2017.7947701 Yambay, D., Walczak, B., Schuckers, S., Czajka, A.: LivDet-Iris 2015 – Iris Liveness Detection Competition 2015, pp. 1–6 (2017).
https://doi.org/10.1109/ISBA.2017.7947701
- Title
- On Data-Driven Approaches for Presentation Attack Detection in Iris Recognition Systems
- DOI
- https://doi.org/10.1007/978-981-15-8297-4_38
- Authors:
-
Deepika Sharma
Arvind Selwal
- Publisher
- Springer Singapore
- Sequence number
- 38