Skip to main content
Top
Published in:

09-09-2024

On efficient modeling of drain current for designing high-power GaN HEMT-based circuits

Authors: Anwar Jarndal, Famin Rahman Rakib, Mohammad Abdul Alim

Published in: Journal of Computational Electronics | Issue 6/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, different modeling approaches to the drain current, including analytical and artificial neural network (ANN) modeling, are investigated. The adopted models address the inherent self-heating and kink effects, especially in high-power GaN-based high electron mobility transistors (HEMTs). Different optimization algorithms were demonstrated for extracting the model parameters, including genetic algorithm optimization (GAO), gray wolf optimization (GWO), growth optimization (GO), and particle swarm optimization (PSO). The modeling approaches are applied to DC IV measurements of 1-mm, 4-mm, and 2-mm GaN HEMTs on SiC and Si substrates. An improved optimization procedure was applied to the analytical models to find the main parameters responsible for fitting the general nonlinear behavior of the device. Then, the thermal or self-heating parameters are tuned for best fitting in the high-power dissipation region. The kink effect has been counted by adding another factor to the analytical formula to characterize the voltage dependency of this effect. The ANN modeling provides an efficient and cost-effective solution to accurately simulate the IV characteristics with less effort. In this technique, there is no need for a predefined closed formula or a complicated fitting parameter extraction process. Also, the model training was enhanced by using a genetic algorithm augmented backpropagation technique. The investigated analytical and ANN techniques were demonstrated by modeling the IV characteristics of the considered GaN HEMTs. The results obtained confirm the advantages of using ANN modeling for solving such problems and large-signal modeling applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
8.
go back to reference Dobes, J., Pospisil, L.: Enhancing the accuracy of microwave element models by artificial neural networks. Radioengineering 13(3), 7–12 (2004) Dobes, J., Pospisil, L.: Enhancing the accuracy of microwave element models by artificial neural networks. Radioengineering 13(3), 7–12 (2004)
10.
go back to reference Ahmed, M.M.: Optimization of active channel thickness of mm-wavelength GaAs MESFETs by using a nonlinear I–V model. IEEE Trans. Electron Devices 47(2), 299–303 (2000)CrossRef Ahmed, M.M.: Optimization of active channel thickness of mm-wavelength GaAs MESFETs by using a nonlinear I–V model. IEEE Trans. Electron Devices 47(2), 299–303 (2000)CrossRef
36.
go back to reference Kompa, G.: Basic Properties of III-V Devices - Understanding Mysterious Trapping Phenomena. Kassel University Press GmbH, Kassel (2014) Kompa, G.: Basic Properties of III-V Devices - Understanding Mysterious Trapping Phenomena. Kassel University Press GmbH, Kassel (2014)
38.
go back to reference Jarndal, A., Swaroop, P., Hussein, A., Fadhel M.G.: A Genetic Neural Network Modeling of GaN HEMTs for RF Power Amplifiers Design. In: IEEE International Conference on Microelectronics, Tunisia, December (2011) Jarndal, A., Swaroop, P., Hussein, A., Fadhel M.G.: A Genetic Neural Network Modeling of GaN HEMTs for RF Power Amplifiers Design. In: IEEE International Conference on Microelectronics, Tunisia, December (2011)
Metadata
Title
On efficient modeling of drain current for designing high-power GaN HEMT-based circuits
Authors
Anwar Jarndal
Famin Rahman Rakib
Mohammad Abdul Alim
Publication date
09-09-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 6/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02225-x