Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

Published in: Applicable Algebra in Engineering, Communication and Computing 1/2022

06-05-2020 | Original Paper

On Euclidean self-dual codes and isometry codes

Author: Lin Sok

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 1/2022

Login to get access
share
SHARE

Abstract

In this paper, we provide new methods and algorithms to construct Euclidean self-dual codes over large finite fields. With the existence of a dual basis, we study dual preserving linear maps, and as an application, we use them to construct self-orthogonal codes over small finite prime fields using the method of concatenation. Many new optimal self-orthogonal and self-dual codes are obtained.
Literature
1.
go back to reference Arasu, K.T., Gulliver, T.A.: Self-dual codes over \(\mathbb{F}_p\) and weighing matrices. IEEE Trans. Inf. Theory 47(5), 2051–2056 (2001) CrossRef Arasu, K.T., Gulliver, T.A.: Self-dual codes over \(\mathbb{F}_p\) and weighing matrices. IEEE Trans. Inf. Theory 47(5), 2051–2056 (2001) CrossRef
2.
go back to reference Betsumiya, K., Georgiou, S., Gulliver, T.A., Harada, M., Koukouvinos, C.: On self-dual codes over some prime fields. Discrete Math. 262, 37–58 (2003) MathSciNetCrossRef Betsumiya, K., Georgiou, S., Gulliver, T.A., Harada, M., Koukouvinos, C.: On self-dual codes over some prime fields. Discrete Math. 262, 37–58 (2003) MathSciNetCrossRef
3.
go back to reference Bosma, W., Cannon, J.J., Fieker, C., Steel, A.(eds.): Handbook of Magma Functions, Edition 2.16, 5017 p (2010) Bosma, W., Cannon, J.J., Fieker, C., Steel, A.(eds.): Handbook of Magma Functions, Edition 2.16, 5017 p (2010)
4.
go back to reference Chen, H., Ling, S., Xing, C.P.: Asymptotically good quantum codes exceeding the Ashikhmin–Litsyn–Tsfasman bound. IEEE Trans. Inf. Theory 47(5), 2055–2058 (2001) MathSciNetCrossRef Chen, H., Ling, S., Xing, C.P.: Asymptotically good quantum codes exceeding the Ashikhmin–Litsyn–Tsfasman bound. IEEE Trans. Inf. Theory 47(5), 2055–2058 (2001) MathSciNetCrossRef
5.
go back to reference Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Marti-Farre, J., Padro, C.: On codes, matroids, and secure multiparty computation from linear secret-sharing schemes. IEEE Trans. Inf. Theory 54(6), 2647–2657 (2008) MathSciNetCrossRef Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Marti-Farre, J., Padro, C.: On codes, matroids, and secure multiparty computation from linear secret-sharing schemes. IEEE Trans. Inf. Theory 54(6), 2647–2657 (2008) MathSciNetCrossRef
6.
go back to reference Dougherty, S.T., Mesnager, S., Solé, P.: Secret-sharing schemes based on self-dual codes. In: IEEE Information Theory Workshop, pp. 338–342 (2008) Dougherty, S.T., Mesnager, S., Solé, P.: Secret-sharing schemes based on self-dual codes. In: IEEE Information Theory Workshop, pp. 338–342 (2008)
7.
go back to reference Fang, W., Fu, F.: New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes. IEEE Trans. Inf. Theory 65(9), 5574–5579 (2019) MathSciNetCrossRef Fang, W., Fu, F.: New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes. IEEE Trans. Inf. Theory 65(9), 5574–5579 (2019) MathSciNetCrossRef
10.
go back to reference Gaborit, P., Otmani, A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9(3), 372–394 (2003) MathSciNetCrossRef Gaborit, P., Otmani, A.: Experimental constructions of self-dual codes. Finite Fields Appl. 9(3), 372–394 (2003) MathSciNetCrossRef
11.
go back to reference Georgiou, S., Koukouvinos, C.: MDS self-dual codes over large prime fields. Finite Fields Appl. 8, 455–470 (2002) MathSciNetCrossRef Georgiou, S., Koukouvinos, C.: MDS self-dual codes over large prime fields. Finite Fields Appl. 8, 455–470 (2002) MathSciNetCrossRef
13.
go back to reference Grassl, M., Gulliver, T. A.: On self-dual MDS codes. In: ISIT 2008 Toronto, Canada, July 6 –11 (2008) Grassl, M., Gulliver, T. A.: On self-dual MDS codes. In: ISIT 2008 Toronto, Canada, July 6 –11 (2008)
15.
go back to reference Jin, L.F., Xing, C.P.: New MDS self-dual codes from generalized Reed–Solomon codes. IEEE Trans. Inf. Theory 63(3), 1434–1438 (2017) MathSciNetCrossRef Jin, L.F., Xing, C.P.: New MDS self-dual codes from generalized Reed–Solomon codes. IEEE Trans. Inf. Theory 63(3), 1434–1438 (2017) MathSciNetCrossRef
16.
go back to reference Kim, J.-L., Lee, Y.: Construction of MDS self-dual codes over Galois rings. Des. Codes Crypt. 45, 247–258 (2007) MathSciNetCrossRef Kim, J.-L., Lee, Y.: Construction of MDS self-dual codes over Galois rings. Des. Codes Crypt. 45, 247–258 (2007) MathSciNetCrossRef
17.
go back to reference Kim, J.-L., Lee, Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Combin. Theory Ser. A 105, 79–95 (2004) MathSciNetCrossRef Kim, J.-L., Lee, Y.: Euclidean and Hermitian self-dual MDS codes over large finite fields. J. Combin. Theory Ser. A 105, 79–95 (2004) MathSciNetCrossRef
19.
go back to reference MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977) MATH MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977) MATH
20.
21.
go back to reference Massey, J.: Some applications of coding theory in cryptography. In: Proceedings of 4th IMA conference on cryptography and coding, pp. 33–47 (1995) Massey, J.: Some applications of coding theory in cryptography. In: Proceedings of 4th IMA conference on cryptography and coding, pp. 33–47 (1995)
23.
go back to reference Shi, M., Sok, L., Solé, P., Çalkavur, S.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018) MathSciNetCrossRef Shi, M., Sok, L., Solé, P., Çalkavur, S.: Self-dual codes and orthogonal matrices over large finite fields. Finite Fields Appl. 54, 297–314 (2018) MathSciNetCrossRef
24.
go back to reference Taylor, D.: The Geometry of the Classical Groups Sigma Series in Pure Mathematics 9. Heldermann Verlag, Berlin (1992) Taylor, D.: The Geometry of the Classical Groups Sigma Series in Pure Mathematics 9. Heldermann Verlag, Berlin (1992)
25.
go back to reference Tong, H., Wang, X.: New MDS Euclidean and Hermitian self-dual codes over finite fields. Adv. Pure Math. 7, 325–333 (2017) CrossRef Tong, H., Wang, X.: New MDS Euclidean and Hermitian self-dual codes over finite fields. Adv. Pure Math. 7, 325–333 (2017) CrossRef
Metadata
Title
On Euclidean self-dual codes and isometry codes
Author
Lin Sok
Publication date
06-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 1/2022
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-020-00434-y

Other articles of this Issue 1/2022

Applicable Algebra in Engineering, Communication and Computing 1/2022 Go to the issue

Acknowledgment

Acknowledgment

Premium Partner