Skip to main content
Top

2024 | OriginalPaper | Chapter

On Leonardo Numbers and Fibonacci Fundamental System

Authors : Elen Viviani Pereira Spreafico, Paula Maria Machado Cruz Catarino

Published in: Mathematical Methods for Engineering Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Our goal is to explore the generalized Leonardo numbers, through the properties of the Fibonacci fundamental systems related to the elements of this sequence. We explicitly describe the closed connection between the sequences of the Fibonacci fundamental system and the generalized Leonardo numbers. Moreover, the matrix approach is considered for studying the combinatorial identities and the generalized Cassini identity for the generalized Leonardo numbers. In addition, the analytical aspect about each sequence of the generalized Leonardo numbers is elaborated. Finally, the combinatorial and the analytical formula of the generalized Cassini identity are investigated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Alp, Y., Koçer, E.G.: Some properties of Leonardo numbers. Konuralp J. Math. 9(1), 183–189 (2021)MathSciNet Alp, Y., Koçer, E.G.: Some properties of Leonardo numbers. Konuralp J. Math. 9(1), 183–189 (2021)MathSciNet
2.
go back to reference Alves, F.R.V, Vieira, R.P.M.: The Newton fractal’s Leonardo sequence study with the Google colab. Int. Electron. J. Math. Educ. 15, 1–9 (2020)MathSciNet Alves, F.R.V, Vieira, R.P.M.: The Newton fractal’s Leonardo sequence study with the Google colab. Int. Electron. J. Math. Educ. 15, 1–9 (2020)MathSciNet
3.
go back to reference Ben Taher, R., Rachidi, M.: On the matrix powers and exponential by r-generalized Fibonacci sequences methods: the companion matrix case. Linear Algebra Appl. 370, 341–353 (2003)MathSciNetCrossRef Ben Taher, R., Rachidi, M.: On the matrix powers and exponential by r-generalized Fibonacci sequences methods: the companion matrix case. Linear Algebra Appl. 370, 341–353 (2003)MathSciNetCrossRef
4.
go back to reference Ben Taher, R., Rachidi, M.: Solving some generalized Vandermonde systems and inverse of their associate matrices via new approaches for the Binet formula. Appl. Math. Comput. 290, 267–280 (2016)MathSciNet Ben Taher, R., Rachidi, M.: Solving some generalized Vandermonde systems and inverse of their associate matrices via new approaches for the Binet formula. Appl. Math. Comput. 290, 267–280 (2016)MathSciNet
5.
go back to reference Catarino, P., Borges, A.: On Leonardo numbers. Acta Math. Univ. Comenianae 89(1), 75–86 (2019)MathSciNet Catarino, P., Borges, A.: On Leonardo numbers. Acta Math. Univ. Comenianae 89(1), 75–86 (2019)MathSciNet
6.
go back to reference Catarino, P., Borges, A.: A note on incomplete Leonardo numbers. Integers 20, A43 (2020)MathSciNet Catarino, P., Borges, A.: A note on incomplete Leonardo numbers. Integers 20, A43 (2020)MathSciNet
7.
go back to reference Craveiro, I.M., Pereira Spreafico, E.V., Rachidi, M.: On a model of generalized Pell numbers. Int. J. Adv. Eng. Res. Sci. 8(9), 527–550 (2021) Craveiro, I.M., Pereira Spreafico, E.V., Rachidi, M.: On a model of generalized Pell numbers. Int. J. Adv. Eng. Res. Sci. 8(9), 527–550 (2021)
9.
go back to reference El Wahbi, B., Mouline, M., Rachidi, M.: Solving nonhomogeneous recurrences relations by matrix method. Fibonacci Quart. 40(2), 109–117 (2002)MathSciNet El Wahbi, B., Mouline, M., Rachidi, M.: Solving nonhomogeneous recurrences relations by matrix method. Fibonacci Quart. 40(2), 109–117 (2002)MathSciNet
11.
go back to reference Kuhapatanakul, K., Chobsorn, J.: On the generalized Leonardo numbers. Integers 22, A48 (2022)MathSciNet Kuhapatanakul, K., Chobsorn, J.: On the generalized Leonardo numbers. Integers 22, A48 (2022)MathSciNet
12.
go back to reference Spreafico, E.V.P., Rachidi, M.: Fibonacci fundamental system and generalized Cassini identity. Fibonacci Quart. 57(2), 155–157 (2019)MathSciNet Spreafico, E.V.P., Rachidi, M.: Fibonacci fundamental system and generalized Cassini identity. Fibonacci Quart. 57(2), 155–157 (2019)MathSciNet
13.
go back to reference Spreafico, E.V.P., Rachidi, M.: On generalized Pell numbers of order \(r \geq 2\). Trends Comput. Appl. Math. 22(1), 125–138 (2021) Spreafico, E.V.P., Rachidi, M.: On generalized Pell numbers of order \(r \geq 2\). Trends Comput. Appl. Math. 22(1), 125–138 (2021)
Metadata
Title
On Leonardo Numbers and Fibonacci Fundamental System
Authors
Elen Viviani Pereira Spreafico
Paula Maria Machado Cruz Catarino
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_6

Premium Partners