Skip to main content
Top
Published in: Designs, Codes and Cryptography 1/2021

29-10-2020

On metric regularity of Reed–Muller codes

Author: Alexey Oblaukhov

Published in: Designs, Codes and Cryptography | Issue 1/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work we study metric properties of the well-known family of binary Reed–Muller codes. Let A be an arbitrary subset of the Boolean cube, and \({\widehat{A}}\) be the metric complement of A—the set of all vectors of the Boolean cube at the maximal possible distance from A. If the metric complement of \({\widehat{A}}\) coincides with A, then the set A is called a metrically regular set. The problem of investigating metrically regular sets appeared when studying bent functions, which have important applications in cryptography and coding theory and are also one of the earliest examples of a metrically regular set. In this work we describe metric complements and establish the metric regularity of the codes \({{\mathcal {R}}}{{\mathcal {M}}}(0,m)\) and \({{\mathcal {R}}}{{\mathcal {M}}}(k,m)\) for \(k \geqslant m-3\). Additionally, the metric regularity of the codes \({{\mathcal {R}}}{{\mathcal {M}}}(1,5)\) and \({{\mathcal {R}}}{{\mathcal {M}}}(2,6)\) is proved. Combined with previous results by Tokareva (Discret Math 312(3):666–670, 2012) concerning duality of affine and bent functions, this establishes the metric regularity of most Reed–Muller codes with known covering radius. It is conjectured that all Reed–Muller codes are metrically regular.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berlekamp E., Welch L.: Weight distributions of the cosets of the \((32, 6)\) Reed–Muller code. IEEE Trans. Inf. Theory 18(1), 203–207 (1972).MathSciNetCrossRef Berlekamp E., Welch L.: Weight distributions of the cosets of the \((32, 6)\) Reed–Muller code. IEEE Trans. Inf. Theory 18(1), 203–207 (1972).MathSciNetCrossRef
2.
go back to reference Carlet C., Crama Y., Hammer P.L.: Boolean Functions for Cryptography and Error Correcting Codes. Chapter of the monograph “Boolean Models and Methods in Mathematics, Computer Science, and Engineering”, pp. 257–397. Cambridge University Press, Cambridge (2010). Carlet C., Crama Y., Hammer P.L.: Boolean Functions for Cryptography and Error Correcting Codes. Chapter of the monograph “Boolean Models and Methods in Mathematics, Computer Science, and Engineering”, pp. 257–397. Cambridge University Press, Cambridge (2010).
3.
4.
go back to reference Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes, vol. 54. Elsevier, Amsterdam (1997). Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes, vol. 54. Elsevier, Amsterdam (1997).
5.
go back to reference Hou X.D.: Covering radius of the Reed–Muller code \(R(1, 7)\)—a simpler proof. J. Comb. Theory Ser. A 74(2), 337–341 (1996).MathSciNetCrossRef Hou X.D.: Covering radius of the Reed–Muller code \(R(1, 7)\)—a simpler proof. J. Comb. Theory Ser. A 74(2), 337–341 (1996).MathSciNetCrossRef
6.
go back to reference Kolomeec N.: The graph of minimal distances of bent functions and its properties. Des. Codes Cryptogr. 85(3), 395–410 (2017).MathSciNetCrossRef Kolomeec N.: The graph of minimal distances of bent functions and its properties. Des. Codes Cryptogr. 85(3), 395–410 (2017).MathSciNetCrossRef
8.
go back to reference MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes, vol. 16. Elsevier, Amsterdam (1977). MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes, vol. 16. Elsevier, Amsterdam (1977).
9.
go back to reference McLoughlin A.M.: The covering radius of the \((m-3)\)-rd order Reed Muller codes and a lower bound on the \((m-4)\)-th order Reed Muller codes. SIAM J. Appl. Math. 37(2), 419–422 (1979).MathSciNetCrossRef McLoughlin A.M.: The covering radius of the \((m-3)\)-rd order Reed Muller codes and a lower bound on the \((m-4)\)-th order Reed Muller codes. SIAM J. Appl. Math. 37(2), 419–422 (1979).MathSciNetCrossRef
10.
go back to reference Mesnager S.: Bent Functions: Fundamentals and Results. Springer, Berlin (2016).CrossRef Mesnager S.: Bent Functions: Fundamentals and Results. Springer, Berlin (2016).CrossRef
11.
go back to reference Mykkeltveit J.: The covering radius of the \((128, 8)\) Reed–Muller code is \(56\). IEEE Trans. Inf. Theory 26(3), 359–362 (1980).MathSciNetCrossRef Mykkeltveit J.: The covering radius of the \((128, 8)\) Reed–Muller code is \(56\). IEEE Trans. Inf. Theory 26(3), 359–362 (1980).MathSciNetCrossRef
13.
14.
go back to reference Oblaukhov A.K.: Maximal metrically regular sets. Sib. Electron. Math. Rep. 15, 1842–1849 (2018).MathSciNet Oblaukhov A.K.: Maximal metrically regular sets. Sib. Electron. Math. Rep. 15, 1842–1849 (2018).MathSciNet
15.
go back to reference Oblaukhov A.: A lower bound on the size of the largest metrically regular subset of the Boolean cube. Cryptogr. Commun. 11(4), 777–791 (2019).MathSciNetCrossRef Oblaukhov A.: A lower bound on the size of the largest metrically regular subset of the Boolean cube. Cryptogr. Commun. 11(4), 777–791 (2019).MathSciNetCrossRef
16.
go back to reference Rothaus O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).CrossRef Rothaus O.S.: On “bent” functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976).CrossRef
17.
go back to reference Schatz J.: The second order Reed–Muller code of length \(64\) has covering radius \(18\). IEEE Trans. Inf. Theory 27(4), 529–530 (1981).MathSciNetCrossRef Schatz J.: The second order Reed–Muller code of length \(64\) has covering radius \(18\). IEEE Trans. Inf. Theory 27(4), 529–530 (1981).MathSciNetCrossRef
18.
go back to reference Stanica P., Sasao T., Butler J.T.: Distance duality on some classes of Boolean functions. J. Comb. Math. Comb. Comput. 107, 181–198 (2018).MathSciNet Stanica P., Sasao T., Butler J.T.: Distance duality on some classes of Boolean functions. J. Comb. Math. Comb. Comput. 107, 181–198 (2018).MathSciNet
19.
go back to reference Tokareva N.N.: The group of automorphisms of the set of bent functions. Discret. Math. Appl. 20(5–6), 655–664 (2010). Tokareva N.N.: The group of automorphisms of the set of bent functions. Discret. Math. Appl. 20(5–6), 655–664 (2010).
20.
21.
go back to reference Tokareva N.: Bent Functions: Results and Applications to Cryptography. Academic Press, London (2015).CrossRef Tokareva N.: Bent Functions: Results and Applications to Cryptography. Academic Press, London (2015).CrossRef
22.
go back to reference Wang Q.: The covering radius of the Reed–Muller code \(RM(2,7)\) is \(40\). Discret. Mathe. 342(12), Article 111625 (2019). Wang Q.: The covering radius of the Reed–Muller code \(RM(2,7)\) is \(40\). Discret. Mathe. 342(12), Article 111625 (2019).
Metadata
Title
On metric regularity of Reed–Muller codes
Author
Alexey Oblaukhov
Publication date
29-10-2020
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 1/2021
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-020-00813-z

Other articles of this Issue 1/2021

Designs, Codes and Cryptography 1/2021 Go to the issue

Premium Partner