Skip to main content
Top
Published in: Wireless Networks 5/2020

09-03-2020

On mixing reservoir targeted drug delivery Modeling-based Internet of Bio-NanoThings

Authors: Aya El-Fatyany, Hongzhi Wang, Saied M. Abd El-atty

Published in: Wireless Networks | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nowadays, the Internet of Bio-NanoThings (IoBNT) is playing an important role to become the leading technique used in healthcare delivery systems. The IoBNT is considered a promising paradigm for efficient communication between nanodevices to deliver therapeutic drug molecules and thus achieve the target concentration to the diseased cell/tissue inside intra-body nanonetworks. However, ignoring the physical architecture of these nanodevices may effect on the delivered concentration when employing the IoBNT paradigm. Therefore, in this paper, we propose a spherical transmitter nanodevice, namely reservoir for controlling the drug molecules to be released and showing the effects of the geometry design of such nanodevice on the concentration arrived inside intra-body nanonetwork. Moreover, we present a pharmacokinetic system comprising of a mathematical model for studying the effects and variance in drug concentration, while taking into consideration the distance from the center of the nanotransmitter to the center of the nanoreceiver. The performance analysis of the proposed IoBNT system is numerically investigated. The performance is evaluated by employing the pharmacokinetic model in terms of bio-cyber interface forward and reverse links. The simulation results reveal that the proposed model is able to achieve a high concentration around the targeted cells and thus decrease side effects around healthy cells compared with the state-of-the-art. Additionally, the results illustrate that proposed reservoir is capable of controlling the emission of the therapeutic drug molecules and thus improving the delivery of the dose at target time.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chude-Okonkwo, U. A., Malekian, R., & Maharaj, B. S. (2016). Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Transactions on Nanobioscience,15(3), 230–245.CrossRef Chude-Okonkwo, U. A., Malekian, R., & Maharaj, B. S. (2016). Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Transactions on Nanobioscience,15(3), 230–245.CrossRef
2.
go back to reference Fakruddin, M., Hossain, Z., & Afroz, H. (2012). Prospects and applications of nanobiotechnology: A medical perspective. Journal of Nanobiotechnology,10(1), 31.CrossRef Fakruddin, M., Hossain, Z., & Afroz, H. (2012). Prospects and applications of nanobiotechnology: A medical perspective. Journal of Nanobiotechnology,10(1), 31.CrossRef
3.
go back to reference Chude-Okonkwo, U. A., Malekian, R., Maharaj, B. et al. Bio-inspired approach for eliminating redundant nanodevices in Internet of Bio-Nano Things, pp. 1–6. Chude-Okonkwo, U. A., Malekian, R., Maharaj, B. et al. Bio-inspired approach for eliminating redundant nanodevices in Internet of Bio-Nano Things, pp. 1–6.
4.
go back to reference Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks,52(12), 2260–2279.CrossRef Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks,52(12), 2260–2279.CrossRef
5.
go back to reference Freitas, R. A. (2005). Current status of nanomedicine and medical nanorobotics. Journal of Computational and Theoretical Nanoscience,2(1), 1–25. Freitas, R. A. (2005). Current status of nanomedicine and medical nanorobotics. Journal of Computational and Theoretical Nanoscience,2(1), 1–25.
6.
go back to reference Silva, C. O., Pinho, J. O., Lopes, J. M., et al. (2019). Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics,11(1), 22.CrossRef Silva, C. O., Pinho, J. O., Lopes, J. M., et al. (2019). Current trends in cancer nanotheranostics: Metallic, polymeric, and lipid-based systems. Pharmaceutics,11(1), 22.CrossRef
7.
go back to reference Griffith, L. G., & Naughton, G. (2002). Tissue engineering—Current challenges and expanding opportunities. Science,295(5557), 1009–1014.CrossRef Griffith, L. G., & Naughton, G. (2002). Tissue engineering—Current challenges and expanding opportunities. Science,295(5557), 1009–1014.CrossRef
8.
go back to reference Singh, A., Bivalacqua, T. J., & Sopko, N. (2018). Urinary tissue engineering: Challenges and opportunities. Sexual Medicine Reviews,6(1), 35–44.CrossRef Singh, A., Bivalacqua, T. J., & Sopko, N. (2018). Urinary tissue engineering: Challenges and opportunities. Sexual Medicine Reviews,6(1), 35–44.CrossRef
9.
go back to reference Gandhi, A., Paul, A., Sen, S. O., et al. (2015). Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian Journal of Pharmaceutical Sciences,10(2), 99–107.CrossRef Gandhi, A., Paul, A., Sen, S. O., et al. (2015). Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications. Asian Journal of Pharmaceutical Sciences,10(2), 99–107.CrossRef
10.
go back to reference Byrne, R., & Diamond, D. (2006). Chemo/bio-sensor networks. Nature Materials,5(6), 421.CrossRef Byrne, R., & Diamond, D. (2006). Chemo/bio-sensor networks. Nature Materials,5(6), 421.CrossRef
11.
go back to reference Kuscu, M., & Akan, O. B. Modeling and analysis of SiNW bioFET as molecular antenna for bio-cyber interfaces towards the Internet of Bio-Nanothings, pp. 669–674. Kuscu, M., & Akan, O. B. Modeling and analysis of SiNW bioFET as molecular antenna for bio-cyber interfaces towards the Internet of Bio-Nanothings, pp. 669–674.
12.
go back to reference Atakan, B., Akan, O. B., & Balasubramaniam, S. (2012). Body area nanonetworks with molecular communications in nanomedicine. IEEE Communications Magazine,50(1), 28–34.CrossRef Atakan, B., Akan, O. B., & Balasubramaniam, S. (2012). Body area nanonetworks with molecular communications in nanomedicine. IEEE Communications Magazine,50(1), 28–34.CrossRef
13.
go back to reference Nel, A. E., Lutz, M. D., Darrell, V., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials,8(7), 543.CrossRef Nel, A. E., Lutz, M. D., Darrell, V., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials,8(7), 543.CrossRef
14.
go back to reference Nakano, T., Moore, M., Okaie, Y. et al. Swarming biological nanomachines through molecular communication for targeted drug delivery, pp. 2317–2320. Nakano, T., Moore, M., Okaie, Y. et al. Swarming biological nanomachines through molecular communication for targeted drug delivery, pp. 2317–2320.
15.
go back to reference Nakano, T., Suda, T., Okaie, Y., et al. (2014). Molecular communication among biological nanomachines: A layered architecture and research issues. IEEE Transactions on Nanobioscience,13(3), 169–197.CrossRef Nakano, T., Suda, T., Okaie, Y., et al. (2014). Molecular communication among biological nanomachines: A layered architecture and research issues. IEEE Transactions on Nanobioscience,13(3), 169–197.CrossRef
16.
go back to reference Yang, W.-W., & Pierstorff, E. (2012). Reservoir-based polymer drug delivery systems. Journal of Laboratory Automation,17(1), 50–58.CrossRef Yang, W.-W., & Pierstorff, E. (2012). Reservoir-based polymer drug delivery systems. Journal of Laboratory Automation,17(1), 50–58.CrossRef
17.
go back to reference Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release,161(2), 351–362.MATHCrossRef Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release,161(2), 351–362.MATHCrossRef
18.
go back to reference Chahibi, Y. (2017). Molecular communication for drug delivery systems: A survey. Nano Communication Networks,11, 90–102.CrossRef Chahibi, Y. (2017). Molecular communication for drug delivery systems: A survey. Nano Communication Networks,11, 90–102.CrossRef
19.
go back to reference Chahibi, Y., Akyildiz, I. F., Balasubramaniam, S., et al. (2015). Molecular communication modeling of antibody-mediated drug delivery systems. IEEE Transactions on Biomedical Engineering,62(7), 1683–1695.CrossRef Chahibi, Y., Akyildiz, I. F., Balasubramaniam, S., et al. (2015). Molecular communication modeling of antibody-mediated drug delivery systems. IEEE Transactions on Biomedical Engineering,62(7), 1683–1695.CrossRef
20.
go back to reference Akyildiz, I. F., Pierobon, M., & Balasubramaniam, S. (2019). An information theoretic framework to analyze molecular communication systems based on statistical mechanics. Proceedings of the IEEE,107(7), 1230–1255.CrossRef Akyildiz, I. F., Pierobon, M., & Balasubramaniam, S. (2019). An information theoretic framework to analyze molecular communication systems based on statistical mechanics. Proceedings of the IEEE,107(7), 1230–1255.CrossRef
21.
go back to reference Lanfranco, R., Mognetti, B. M., & Bruylants, G. (2019). Achieving selective targeting using engineered nanomaterials. In Thermodynamics and biophysics of biomedical nanosystems, Springer, pp. 147–182. Lanfranco, R., Mognetti, B. M., & Bruylants, G. (2019). Achieving selective targeting using engineered nanomaterials. In Thermodynamics and biophysics of biomedical nanosystems, Springer, pp. 147–182.
22.
go back to reference Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., et al. (2015). The internet of Bio-Nano Things. IEEE Communications Magazine,53(3), 32–40.CrossRef Akyildiz, I. F., Pierobon, M., Balasubramaniam, S., et al. (2015). The internet of Bio-Nano Things. IEEE Communications Magazine,53(3), 32–40.CrossRef
23.
go back to reference Chude-Okonkwo, U. A., Malekian, R., & Maharaj, B. (2016). Biologically inspired bio-cyber interface architecture and model for Internet of bio-nanothings applications. IEEE Transactions on Communications,64(8), 3444–3455.CrossRef Chude-Okonkwo, U. A., Malekian, R., & Maharaj, B. (2016). Biologically inspired bio-cyber interface architecture and model for Internet of bio-nanothings applications. IEEE Transactions on Communications,64(8), 3444–3455.CrossRef
24.
go back to reference AbdEl-atty, S. M., Bidar, R., & El-Rabaie, E. S. M. (2019). MolCom system with downlink/uplink biocyber interface for Internet of Bio-NanoThings. International Journal of Communication Systems,33, e4171.CrossRef AbdEl-atty, S. M., Bidar, R., & El-Rabaie, E. S. M. (2019). MolCom system with downlink/uplink biocyber interface for Internet of Bio-NanoThings. International Journal of Communication Systems,33, e4171.CrossRef
25.
go back to reference James, H. P., John, R., Alex, A., et al. (2014). Smart polymers for the controlled delivery of drugs—A concise overview. Acta Pharmaceutica Sinica B,4(2), 120–127.CrossRef James, H. P., John, R., Alex, A., et al. (2014). Smart polymers for the controlled delivery of drugs—A concise overview. Acta Pharmaceutica Sinica B,4(2), 120–127.CrossRef
26.
go back to reference Torchilin, V. (2009). Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics,71(3), 431–444.CrossRef Torchilin, V. (2009). Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics,71(3), 431–444.CrossRef
27.
go back to reference Larson, N., & Ghandehari, H. (2012). Polymeric conjugates for drug delivery. Chemistry of Materials,24(5), 840–853.CrossRef Larson, N., & Ghandehari, H. (2012). Polymeric conjugates for drug delivery. Chemistry of Materials,24(5), 840–853.CrossRef
28.
go back to reference Dollard, M.-A., & Billard, P. (2003). Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. Journal of Microbiological Methods,55(1), 221–229.CrossRef Dollard, M.-A., & Billard, P. (2003). Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. Journal of Microbiological Methods,55(1), 221–229.CrossRef
29.
go back to reference Monson, E., Brasuel, M., Philbert, M., et al. (2003). PEBBLE nanosensors for in vitro bioanalysis. Biomedical Photonics Handbook,9, 1–14. Monson, E., Brasuel, M., Philbert, M., et al. (2003). PEBBLE nanosensors for in vitro bioanalysis. Biomedical Photonics Handbook,9, 1–14.
30.
go back to reference Dhillon, S., & Kostrzewski, A. (2006). Clinical pharmacokinetics. London: Pharmaceutical Press. Dhillon, S., & Kostrzewski, A. (2006). Clinical pharmacokinetics. London: Pharmaceutical Press.
31.
go back to reference Miah, M. K., Shaik, I. H., Feturi, F. G. et al. (2019). Clinical pharmacokinetics. In Clinical pharmacy education, practice and research, Elsevier, pp. 409–424. Miah, M. K., Shaik, I. H., Feturi, F. G. et al. (2019). Clinical pharmacokinetics. In Clinical pharmacy education, practice and research, Elsevier, pp. 409–424.
32.
go back to reference Kuscu, M., Dinc, E., Bilgin, B. A. et al. (2019). Transmitter and receiver architectures for molecular communications: A survey on physical design with modulation, coding, and detection techniques. In Proceedings of the IEEE. Kuscu, M., Dinc, E., Bilgin, B. A. et al. (2019). Transmitter and receiver architectures for molecular communications: A survey on physical design with modulation, coding, and detection techniques. In Proceedings of the IEEE.
33.
go back to reference Klein, B. G. (2019). Cunningham’s textbook of veterinary physiology: Elsevier Health Sciences. Amsterdam: Elsevier. Klein, B. G. (2019). Cunningham’s textbook of veterinary physiology: Elsevier Health Sciences. Amsterdam: Elsevier.
34.
go back to reference Bourne, D. A. (2018). Mathematical modeling of pharmacokinetic data. Abingdon: Routledge.CrossRef Bourne, D. A. (2018). Mathematical modeling of pharmacokinetic data. Abingdon: Routledge.CrossRef
35.
go back to reference Freiberg, S., & Zhu, X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics,282(1–2), 1–18.CrossRef Freiberg, S., & Zhu, X. (2004). Polymer microspheres for controlled drug release. International Journal of Pharmaceutics,282(1–2), 1–18.CrossRef
36.
go back to reference Hossen, S., Hossain, M. K., Basher, M., et al. (2018). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research,15, 1–18.CrossRef Hossen, S., Hossain, M. K., Basher, M., et al. (2018). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research,15, 1–18.CrossRef
37.
go back to reference Cascone, S., Lamberti, G., Titomanlio, G., et al. (2013). Pharmacokinetics of remifentanil: A three-compartmental modeling approach. Translational Medicine@ UniSa,7, 18. Cascone, S., Lamberti, G., Titomanlio, G., et al. (2013). Pharmacokinetics of remifentanil: A three-compartmental modeling approach. Translational Medicine@ UniSa,7, 18.
Metadata
Title
On mixing reservoir targeted drug delivery Modeling-based Internet of Bio-NanoThings
Authors
Aya El-Fatyany
Hongzhi Wang
Saied M. Abd El-atty
Publication date
09-03-2020
Publisher
Springer US
Published in
Wireless Networks / Issue 5/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02294-3

Other articles of this Issue 5/2020

Wireless Networks 5/2020 Go to the issue