Skip to main content
Top
Published in: Numerical Algorithms 4/2022

07-05-2022 | Original Paper

On nested Picard iterative integrators for highly oscillatory second-order differential equations

Author: Yan Wang

Published in: Numerical Algorithms | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper is devoted to the construction and analysis of uniformly accurate (UA) nested Picard iterative integrators (NPI) for highly oscillatory second-order differential equations. The equations involve a dimensionless parameter ε ∈ (0,1], and their solutions are highly oscillatory in time with wavelength at \(\boldsymbol {\mathcal {O}}(\varepsilon ^{2})\), which brings severe burdens in numerical computation when ε ≪ 1. In this work, we first propose two NPI schemes for solving a differential equation. The schemes are uniformly first- and second-order accurate for all ε ∈ (0,1]. Moreover, they are super convergent when the time-step size is smaller than ε2. Then, the schemes are generalized to a system of differential equations with the same uniform accuracies. Error bounds are rigorously established and numerical results are reported to confirm the error estimates.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Ariel, G., Engquist, B, Tsai, R.: A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 78, 929–956 (2009)CrossRefMATHMathSciNet Ariel, G., Engquist, B, Tsai, R.: A multiscale method for highly oscillatory ordinary differential equations with resonance. Math. Comput. 78, 929–956 (2009)CrossRefMATHMathSciNet
2.
go back to reference Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)CrossRefMATHMathSciNet Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)CrossRefMATHMathSciNet
3.
go back to reference Bao, W., Zhao, X.: Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime. J. Comput. Phys. 398, 108886 (2019)CrossRefMATHMathSciNet Bao, W., Zhao, X.: Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime. J. Comput. Phys. 398, 108886 (2019)CrossRefMATHMathSciNet
4.
go back to reference Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)CrossRefMATHMathSciNet Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)CrossRefMATHMathSciNet
5.
go back to reference Bao, W., Dong, X., Zhao, X.: Uniformly accurate multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47, 111–150 (2014)CrossRefMATHMathSciNet Bao, W., Dong, X., Zhao, X.: Uniformly accurate multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47, 111–150 (2014)CrossRefMATHMathSciNet
6.
go back to reference Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comp. 87, 1227–1254 (2018)CrossRefMATHMathSciNet Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comp. 87, 1227–1254 (2018)CrossRefMATHMathSciNet
7.
go back to reference Cai, Y., Wang, Y.: Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 57, 1602–1624 (2019)CrossRefMATHMathSciNet Cai, Y., Wang, Y.: Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 57, 1602–1624 (2019)CrossRefMATHMathSciNet
8.
go back to reference Castella, F., Chartier, P., Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear schrödinger equation. Found. Comput. Math. 15, 519–559 (2015)CrossRefMATHMathSciNet Castella, F., Chartier, P., Méhats, F., Murua, A.: Stroboscopic averaging for the nonlinear schrödinger equation. Found. Comput. Math. 15, 519–559 (2015)CrossRefMATHMathSciNet
9.
go back to reference Chartier, P., Crouseilles, N., Lemou, M., Méhats, F.: Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear schrödinger equations. Numer. Math. 129, 211–250 (2015)CrossRefMATHMathSciNet Chartier, P., Crouseilles, N., Lemou, M., Méhats, F.: Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear schrödinger equations. Numer. Math. 129, 211–250 (2015)CrossRefMATHMathSciNet
10.
go back to reference Cohen, D.: Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J. Numer. Anal. 26, 34–59 (2005)CrossRefMATHMathSciNet Cohen, D.: Conservation properties of numerical integrators for highly oscillatory Hamiltonian systems. IMA J. Numer. Anal. 26, 34–59 (2005)CrossRefMATHMathSciNet
11.
go back to reference Cohen, D., Hairer, E., Lubich, C.: Modulated Fourier expansions of highly oscillatory differential equations. Found. Comput. Math. 3, 327–345 (2003)CrossRefMATHMathSciNet Cohen, D., Hairer, E., Lubich, C.: Modulated Fourier expansions of highly oscillatory differential equations. Found. Comput. Math. 3, 327–345 (2003)CrossRefMATHMathSciNet
12.
go back to reference Cohen, D., Hairer, E., Lubich, C.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer. Math. 45, 287–305 (2005)CrossRefMATHMathSciNet Cohen, D., Hairer, E., Lubich, C.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT Numer. Math. 45, 287–305 (2005)CrossRefMATHMathSciNet
13.
go back to reference Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)CrossRefMATHMathSciNet Cohen, D., Hairer, E., Lubich, C.: Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110, 113–143 (2008)CrossRefMATHMathSciNet
14.
go back to reference Condon, M., Deaño, A., Iserles, A: On highly oscillatory problems arising in electronic engineering. ESAIM Math. Model. Numer. Anal. 43, 785–804 (2009)CrossRefMATHMathSciNet Condon, M., Deaño, A., Iserles, A: On highly oscillatory problems arising in electronic engineering. ESAIM Math. Model. Numer. Anal. 43, 785–804 (2009)CrossRefMATHMathSciNet
15.
go back to reference Condon, M., Deaño, A., Iserles, A: On second order differential equations with highly oscillatory forcing terms. Proc. R. Soc. A 466, 1809–1828 (2010)CrossRefMATHMathSciNet Condon, M., Deaño, A., Iserles, A: On second order differential equations with highly oscillatory forcing terms. Proc. R. Soc. A 466, 1809–1828 (2010)CrossRefMATHMathSciNet
16.
go back to reference Duncan, D. B.: Symplectic finite difference approximations of the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)CrossRefMATHMathSciNet Duncan, D. B.: Symplectic finite difference approximations of the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)CrossRefMATHMathSciNet
17.
go back to reference Engquist, B., Tsai, Y.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comp. 74, 1707–1742 (2005)CrossRefMATHMathSciNet Engquist, B., Tsai, Y.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math. Comp. 74, 1707–1742 (2005)CrossRefMATHMathSciNet
18.
go back to reference Faou, E., Schratz, K.: Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime. Numer. Math. 126, 441–469 (2014)CrossRefMATHMathSciNet Faou, E., Schratz, K.: Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime. Numer. Math. 126, 441–469 (2014)CrossRefMATHMathSciNet
19.
go back to reference Garcia-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)CrossRefMATHMathSciNet Garcia-Archilla, B., Sanz-Serna, J.M., Skeel, R.D.: Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 20, 930–963 (1998)CrossRefMATHMathSciNet
20.
go back to reference Gauckler, L.: Error analysis of trigonometric integrators for semilinear wave equations. SIAM J. Numer. Anal. 53, 1082–1106 (2015)CrossRefMATHMathSciNet Gauckler, L.: Error analysis of trigonometric integrators for semilinear wave equations. SIAM J. Numer. Anal. 53, 1082–1106 (2015)CrossRefMATHMathSciNet
21.
go back to reference Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)CrossRefMATHMathSciNet Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 3, 381–397 (1961)CrossRefMATHMathSciNet
22.
go back to reference Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A: Math. Gen. 39, 5495–5507 (2006)CrossRefMATHMathSciNet Grimm, V., Hochbruck, M.: Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A: Math. Gen. 39, 5495–5507 (2006)CrossRefMATHMathSciNet
23.
go back to reference Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)CrossRefMATHMathSciNet Hairer, E., Lubich, C.: Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38, 414–441 (2000)CrossRefMATHMathSciNet
24.
go back to reference Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)MATH Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)MATH
25.
go back to reference Hochbruck, M., Ostermann, A.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)CrossRefMATHMathSciNet Hochbruck, M., Ostermann, A.: A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83, 403–426 (1999)CrossRefMATHMathSciNet
27.
go back to reference Iserles, A: On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 24, 365–391 (2004)CrossRefMATHMathSciNet Iserles, A: On the numerical quadrature of highly-oscillating integrals I: Fourier transforms. IMA J. Numer. Anal. 24, 365–391 (2004)CrossRefMATHMathSciNet
28.
go back to reference Lorenz, K., Jahnke, T., Lubich, C.: Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigendecomposition. BIT Numer. Math. 45, 91–115 (2005)CrossRefMATHMathSciNet Lorenz, K., Jahnke, T., Lubich, C.: Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigendecomposition. BIT Numer. Math. 45, 91–115 (2005)CrossRefMATHMathSciNet
29.
go back to reference Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann. 322, 603–621 (2002)CrossRefMATHMathSciNet Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann. 322, 603–621 (2002)CrossRefMATHMathSciNet
30.
go back to reference Masmoudi, N., Nakanishi, K.: From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann. 324, 359–389 (2002)CrossRefMATHMathSciNet Masmoudi, N., Nakanishi, K.: From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann. 324, 359–389 (2002)CrossRefMATHMathSciNet
32.
go back to reference Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)CrossRefMATHMathSciNet Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)CrossRefMATHMathSciNet
33.
go back to reference Sanz-Serna, J. M.: Mollified impulse methods for highly oscillatory differential equations. SIAM J. Numer. Anal. 46, 1040–1059 (2008)CrossRefMATHMathSciNet Sanz-Serna, J. M.: Mollified impulse methods for highly oscillatory differential equations. SIAM J. Numer. Anal. 46, 1040–1059 (2008)CrossRefMATHMathSciNet
34.
35.
36.
37.
go back to reference Tao, T.: Local and Global Analysis of Nonlinear Dispersive and Wave Equations. CBMS Regi. Cmf. Ser. Math. AMS, Providence (2006) Tao, T.: Local and Global Analysis of Nonlinear Dispersive and Wave Equations. CBMS Regi. Cmf. Ser. Math. AMS, Providence (2006)
38.
go back to reference Tsutsumi, M.: Nonrelativistic approximation of nonlinear Klein-Gordon equations in two space dimensions. Nonlinear Anal. 8, 637–643 (1984)CrossRefMATHMathSciNet Tsutsumi, M.: Nonrelativistic approximation of nonlinear Klein-Gordon equations in two space dimensions. Nonlinear Anal. 8, 637–643 (1984)CrossRefMATHMathSciNet
39.
go back to reference Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)CrossRefMATHMathSciNet Wang, B., Iserles, A., Wu, X.: Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found. Comput. Math. 16, 151–181 (2016)CrossRefMATHMathSciNet
40.
go back to reference Weinan, E.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci. 1, 423–436 (2003)CrossRefMATHMathSciNet Weinan, E.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Commun. Math. Sci. 1, 423–436 (2003)CrossRefMATHMathSciNet
41.
go back to reference Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2, 367–450 (2007)MATHMathSciNet Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2, 367–450 (2007)MATHMathSciNet
42.
go back to reference Zhao, X.: Uniformly accurate (UA) multiscale time integrators for second order oscillatory differential equations with large initial data. BIT Numer. Math. 57, 649–683 (2017)CrossRefMATH Zhao, X.: Uniformly accurate (UA) multiscale time integrators for second order oscillatory differential equations with large initial data. BIT Numer. Math. 57, 649–683 (2017)CrossRefMATH
Metadata
Title
On nested Picard iterative integrators for highly oscillatory second-order differential equations
Author
Yan Wang
Publication date
07-05-2022
Publisher
Springer US
Published in
Numerical Algorithms / Issue 4/2022
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-022-01317-8

Other articles of this Issue 4/2022

Numerical Algorithms 4/2022 Go to the issue

Premium Partner