Skip to main content
Top

2016 | OriginalPaper | Chapter

On Objective and Non-objective Kinematic Flow Classification Criteria

Authors : Ramon S. Martins, Anselmo S. Pereira, Gilmar Mompean, Laurent Thais, Roney L. Thompson

Published in: Progress in Wall Turbulence 2

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Turbulent flows present several compact and spatially coherent regions generically known as coherent structures. The understanding of these structures is closely related to the concept of vortex, whose definition is still a subject of controversy within the scientific community. In particular, the role of objectivity in the definition of vortex remains a largely open question. The three most usual criteria for vortex identification (Q, \(\varDelta \) and \(\lambda _2\)) are non-objective since they all depend on the fluid’s rate-of-rotation, which is not invariant to the reference frame. In the present work, we propose an objective definition of these criteria by using the concept of relative rate-of-rotation with respect to the principal directions of the strain rate tensor. We also explore two novel naturally objective flow classification criteria. All the criteria are applied to instantaneous velocity fields obtained by DNS of both Newtonian and viscoelastic turbulent channel flows. The analysis is carried out here for four friction Reynolds numbers from 180 to 1000, emphasizing the difference between objective and non-objective and classification criteria, as well as between Newtonian and non-Newtonian flows. Moreover, we try to obtain from the results of flow classification criteria information related to the polymer drag reduction phenomenon.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R.J. Adrian, Hairpin vortex organization in wall turbulence. Phys. Fluids 19(4), 041301 (2007)CrossRef R.J. Adrian, Hairpin vortex organization in wall turbulence. Phys. Fluids 19(4), 041301 (2007)CrossRef
2.
go back to reference G. Astarita, Objective and generally applicable criteria for flow classification. J. Non-Newton. Fluid 6, 69–76 (1979)CrossRef G. Astarita, Objective and generally applicable criteria for flow classification. J. Non-Newton. Fluid 6, 69–76 (1979)CrossRef
3.
go back to reference M.S. Chong, A.E. Perry, B.J. Cantwell, A general classification of three-dimensional flow fields. Phys. Fluids A-Fluid 2(5), 765–777 (1990)MathSciNetCrossRef M.S. Chong, A.E. Perry, B.J. Cantwell, A general classification of three-dimensional flow fields. Phys. Fluids A-Fluid 2(5), 765–777 (1990)MathSciNetCrossRef
4.
go back to reference C.D. Dimitropoulos, Y. Dubief, E.S.G. Shaqfeh, P. Moin, S.K. Lele, Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow. Phys. Fluids 17, 1–4 (2005)CrossRef C.D. Dimitropoulos, Y. Dubief, E.S.G. Shaqfeh, P. Moin, S.K. Lele, Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow. Phys. Fluids 17, 1–4 (2005)CrossRef
5.
go back to reference R. Drouot, Définition d’un transport associé à un modèle de fluide de deuxième ordre. Comparaison de diverses lois de comportement. C. R. Acad. Sci. A Math. 282, 923–926 (1976) R. Drouot, Définition d’un transport associé à un modèle de fluide de deuxième ordre. Comparaison de diverses lois de comportement. C. R. Acad. Sci. A Math. 282, 923–926 (1976)
6.
go back to reference R. Drouot, M. Lucius, Approximation du second ordre de la loi de comportement des fluides simples. Lois classiques deduites de l’introduction d’un nouveau tenseur objectif. Arch. Mech. 28(2), 189–198 (1976) R. Drouot, M. Lucius, Approximation du second ordre de la loi de comportement des fluides simples. Lois classiques deduites de l’introduction d’un nouveau tenseur objectif. Arch. Mech. 28(2), 189–198 (1976)
7.
go back to reference F.C. Frank, M.R. Mackley, Localized flow birefringence of polyethylene oxide solutions in a two roll mill. J. Polym. Sci. 14, 69–76 (1976) F.C. Frank, M.R. Mackley, Localized flow birefringence of polyethylene oxide solutions in a two roll mill. J. Polym. Sci. 14, 69–76 (1976)
9.
go back to reference R. Huilgol, Comments on “Objective and generally applicable criteria for flow classification”, by G. Astarita. J. Non-Newton. Fluid 7(1), 91–95 (1980) R. Huilgol, Comments on “Objective and generally applicable criteria for flow classification”, by G. Astarita. J. Non-Newton. Fluid 7(1), 91–95 (1980)
10.
go back to reference J.C.R. Hunt, A.A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows, in Proceedings of Summer Program. Center for Turbulence Research. Report CTR-S88 (1988), pp. 193–208 J.C.R. Hunt, A.A. Wray, P. Moin, Eddies, stream, and convergence zones in turbulent flows, in Proceedings of Summer Program. Center for Turbulence Research. Report CTR-S88 (1988), pp. 193–208
12.
go back to reference K. Kim, C.F. Li, R. Sureshkumar, L. Balachandar, R.J. Adrian, Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281–299 (2007)MATHCrossRef K. Kim, C.F. Li, R. Sureshkumar, L. Balachandar, R.J. Adrian, Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281–299 (2007)MATHCrossRef
13.
go back to reference T.S. Luchik, W.G. Tiederman, Turbulent structure in low-concentration drag-reducing channel flows. J. Fluid Mech. 190, 241–263 (1988)CrossRef T.S. Luchik, W.G. Tiederman, Turbulent structure in low-concentration drag-reducing channel flows. J. Fluid Mech. 190, 241–263 (1988)CrossRef
14.
go back to reference J.L. Lumley, Drag reduction by additives. Annu. Rev. Fluid Mech. 11, 367–384 (1969)CrossRef J.L. Lumley, Drag reduction by additives. Annu. Rev. Fluid Mech. 11, 367–384 (1969)CrossRef
15.
go back to reference T. Min, J.Y. Yoo, H. Choi, Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech. 492, 91–100 (2003)MATHCrossRef T. Min, J.Y. Yoo, H. Choi, Maximum drag reduction in a turbulent channel flow by polymer additives. J. Fluid Mech. 492, 91–100 (2003)MATHCrossRef
16.
go back to reference T. Min, J.Y. Yoo, H. Choi, D.D. Joseph, Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213–238 (2003)MATHCrossRef T. Min, J.Y. Yoo, H. Choi, D.D. Joseph, Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213–238 (2003)MATHCrossRef
17.
go back to reference P.R. Schunk, L.E. Scriven, Constitutive equation for modeling mixed extension and shear in polymer solution processing. J. Rheol. 34(7), 1085–1119 (1990)CrossRef P.R. Schunk, L.E. Scriven, Constitutive equation for modeling mixed extension and shear in polymer solution processing. J. Rheol. 34(7), 1085–1119 (1990)CrossRef
18.
go back to reference R. Sureshkumar, A.N. Beris, R.A. Handler, Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9, 743–755 (1997)MATHCrossRef R. Sureshkumar, A.N. Beris, R.A. Handler, Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys. Fluids 9, 743–755 (1997)MATHCrossRef
19.
go back to reference M. Tabor, P.G. de Gennes, A cascade theory of drag reduction. Europhys. Lett. 7, 519–522 (1986)CrossRef M. Tabor, P.G. de Gennes, A cascade theory of drag reduction. Europhys. Lett. 7, 519–522 (1986)CrossRef
20.
go back to reference M. Tabor, I. Klapper, Stretching and alignment in chaotic and turbulent flows. Chaos Solitons Fractals 4(6), 1031–1055 (1994)MATHCrossRef M. Tabor, I. Klapper, Stretching and alignment in chaotic and turbulent flows. Chaos Solitons Fractals 4(6), 1031–1055 (1994)MATHCrossRef
21.
go back to reference L. Thais, A. Tejada-Martinez, T.B. Gatski, G. Mompean, A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow. Comput. Fluids 43, 134–142 (2011)MATHMathSciNetCrossRef L. Thais, A. Tejada-Martinez, T.B. Gatski, G. Mompean, A massively parallel hybrid scheme for direct numerical simulation of turbulent viscoelastic channel flow. Comput. Fluids 43, 134–142 (2011)MATHMathSciNetCrossRef
22.
go back to reference R.L. Thompson, Some perspectives on the dynamic history of a material element. Int. J. Eng. Sci. 46, 524–549 (2008)CrossRef R.L. Thompson, Some perspectives on the dynamic history of a material element. Int. J. Eng. Sci. 46, 524–549 (2008)CrossRef
23.
go back to reference R.L. Thompson, P.R.S. Mendes, Persistence of straining and flow classification. Int. J. Eng. Sci. 43, 79–105 (2005)MATHCrossRef R.L. Thompson, P.R.S. Mendes, Persistence of straining and flow classification. Int. J. Eng. Sci. 43, 79–105 (2005)MATHCrossRef
Metadata
Title
On Objective and Non-objective Kinematic Flow Classification Criteria
Authors
Ramon S. Martins
Anselmo S. Pereira
Gilmar Mompean
Laurent Thais
Roney L. Thompson
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-20388-1_37

Premium Partners