Skip to main content
Top
Published in:

07-05-2022

On permutation quadrinomials with boomerang uniformity 4 and the best-known nonlinearity

Authors: Kwang Ho Kim, Sihem Mesnager, Jong Hyok Choe, Dok Nam Lee, Sengsan Lee, Myong Chol Jo

Published in: Designs, Codes and Cryptography | Issue 6/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article delves into the construction and properties of permutation quadrinomials with boomerang uniformity 4 and high nonlinearity over finite fields. These functions are essential in cryptography, particularly in block cipher designs, due to their resistance to various cryptographic attacks. The study focuses on the mathematical challenges involved in constructing such permutations and presents a novel proof for their bijectivity. The paper also discusses recent advances and open problems in the field, making it a valuable resource for cryptographic researchers and mathematicians.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bar-On A., Dunkelman O., Keller N., Weizman A.: DLCT: A new tool for differential-linear cryptanalysis. In: Ishai Y., Rijmen V. (eds.) EUROCRYPT 2019, LNCS 11476, pp. 313–342 (2019). Bar-On A., Dunkelman O., Keller N., Weizman A.: DLCT: A new tool for differential-linear cryptanalysis. In: Ishai Y., Rijmen V. (eds.) EUROCRYPT 2019, LNCS 11476, pp. 313–342 (2019).
2.
3.
5.
go back to reference Boura C., Canteaut A.: On the boomerang uniformity of cryptographic Sboxes. IACR Trans. Symmetric Cryptol. 2018(3), 290–310 (2018).CrossRef Boura C., Canteaut A.: On the boomerang uniformity of cryptographic Sboxes. IACR Trans. Symmetric Cryptol. 2018(3), 290–310 (2018).CrossRef
6.
go back to reference Bracken C., Leander G.: A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields Appl. 16(4), 231–242 (2010).MathSciNetCrossRef Bracken C., Leander G.: A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields Appl. 16(4), 231–242 (2010).MathSciNetCrossRef
7.
go back to reference Bracken C., Tan C.H., Tan Y.: Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields Appl. 18(3), 537–546 (2012).MathSciNetCrossRef Bracken C., Tan C.H., Tan Y.: Binomial differentially 4 uniform permutations with high nonlinearity. Finite Fields Appl. 18(3), 537–546 (2012).MathSciNetCrossRef
8.
go back to reference Canteaut A., Duval S., Perrin L.: A generalization of Dillon’s APN permutation with the best known differential and nonlinear properties for all fields of size \(2^{4k+2}\). IEEE Trans. Inf. Theory 63(11), 7575–7591 (2017).CrossRef Canteaut A., Duval S., Perrin L.: A generalization of Dillon’s APN permutation with the best known differential and nonlinear properties for all fields of size \(2^{4k+2}\). IEEE Trans. Inf. Theory 63(11), 7575–7591 (2017).CrossRef
9.
go back to reference Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021).MATH Carlet C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge (2021).MATH
10.
go back to reference Cid C., Huang T., Peyrin T., Sasaki Y., Song L.: Boomerang connectivity table: a new cryptanalysis tool. EUROCRYPT 2018, 683–714 (2018).MathSciNetMATH Cid C., Huang T., Peyrin T., Sasaki Y., Song L.: Boomerang connectivity table: a new cryptanalysis tool. EUROCRYPT 2018, 683–714 (2018).MathSciNetMATH
11.
12.
13.
go back to reference Dillon J., Dobbertin H.: New cyclic difference sets with singer parameters. Finite Fields Appl. 10, 342–389 (2004).MathSciNetCrossRef Dillon J., Dobbertin H.: New cyclic difference sets with singer parameters. Finite Fields Appl. 10, 342–389 (2004).MathSciNetCrossRef
14.
go back to reference Gold R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.). IEEE Trans. Inf. Theory 14(1), 15–156 (1968).CrossRef Gold R.: Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.). IEEE Trans. Inf. Theory 14(1), 15–156 (1968).CrossRef
15.
go back to reference Helleseth T., Kholosha A.: On the equation \(x^{2^l+1}+x+a=0\) over \(\rm GF(2^k)\). Finite Fields Appl. 14(1), 159–176 (2008).MathSciNetCrossRef Helleseth T., Kholosha A.: On the equation \(x^{2^l+1}+x+a=0\) over \(\rm GF(2^k)\). Finite Fields Appl. 14(1), 159–176 (2008).MathSciNetCrossRef
16.
go back to reference Helleseth T., Kholosha A.: \(x^{2^l+1}+x+a\) and related affine polynomials over \(\rm GF(2^k)\). Cryptogr. Commun. 2(1), 85–109 (2010).MathSciNetCrossRef Helleseth T., Kholosha A.: \(x^{2^l+1}+x+a\) and related affine polynomials over \(\rm GF(2^k)\). Cryptogr. Commun. 2(1), 85–109 (2010).MathSciNetCrossRef
17.
go back to reference Hou X.D.: Permutation polynomials over finite fields—a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015).MathSciNetCrossRef Hou X.D.: Permutation polynomials over finite fields—a survey of recent advances. Finite Fields Appl. 32, 82–119 (2015).MathSciNetCrossRef
18.
go back to reference Hou X.D.: On a class of permutation trinomials in characteristic \(2\). Cryptogr. Commun. 11(6), 1199–1210 (2019).MathSciNetCrossRef Hou X.D.: On a class of permutation trinomials in characteristic \(2\). Cryptogr. Commun. 11(6), 1199–1210 (2019).MathSciNetCrossRef
19.
go back to reference Hyunwoo K., Seonggyeom K., Deukjo H., Jaechul S., Seokhie H.: Improved differential-linear cryptanalysis using DLCT. J. Korea Inst. Inf. Secur. Cryptol. 28(6), 1379–1392 (2018). Hyunwoo K., Seonggyeom K., Deukjo H., Jaechul S., Seokhie H.: Improved differential-linear cryptanalysis using DLCT. J. Korea Inst. Inf. Secur. Cryptol. 28(6), 1379–1392 (2018).
20.
go back to reference Kasami T.: The weight enumerators for several classes of subcodes of the 2nd order binary reed-muller codes. Inf. Control 18(4), 369–394 (1971).CrossRef Kasami T.: The weight enumerators for several classes of subcodes of the 2nd order binary reed-muller codes. Inf. Control 18(4), 369–394 (1971).CrossRef
21.
go back to reference Kim K.H., Choe J., Mesnager S.: Solving \(X^{q+1}+X+a=0\) over Finite Fields. Finite Fields Appl. 70, 101797 (2021).CrossRef Kim K.H., Choe J., Mesnager S.: Solving \(X^{q+1}+X+a=0\) over Finite Fields. Finite Fields Appl. 70, 101797 (2021).CrossRef
22.
go back to reference Kim K.H., Choe J.H., Mesnager S.: Complete solution over \(\rm GF({p^n})\) of the equation \(X^{p^k+1}+X+a=0\). Finite Fields Appl. 76, 101902 (2021).CrossRef Kim K.H., Choe J.H., Mesnager S.: Complete solution over \(\rm GF({p^n})\) of the equation \(X^{p^k+1}+X+a=0\). Finite Fields Appl. 76, 101902 (2021).CrossRef
23.
go back to reference Kim K.H., Mesnager S.: Solving \(x^{2^k+1}+x+a=0\) in \(\rm GF({p^n})\) with \(\text{ gcd }(n, k)=1\). Finite Fields Appl. 63, 101630 (2020).MathSciNetCrossRef Kim K.H., Mesnager S.: Solving \(x^{2^k+1}+x+a=0\) in \(\rm GF({p^n})\) with \(\text{ gcd }(n, k)=1\). Finite Fields Appl. 63, 101630 (2020).MathSciNetCrossRef
25.
26.
go back to reference Li N., Hu Z., Xiong M., Zeng X.: A note on cryptographically strong permutations from the butterfly structure. J. Des. Codes Cryptogr. 90, 265–276 (2022).MathSciNetCrossRef Li N., Hu Z., Xiong M., Zeng X.: A note on cryptographically strong permutations from the butterfly structure. J. Des. Codes Cryptogr. 90, 265–276 (2022).MathSciNetCrossRef
27.
go back to reference Li K., Qu L., Li C., Chen H.: On a conjecture about a class of permutation quadrinomials. Finite Fields Appl. 66, 101690 (2020).MathSciNetCrossRef Li K., Qu L., Li C., Chen H.: On a conjecture about a class of permutation quadrinomials. Finite Fields Appl. 66, 101690 (2020).MathSciNetCrossRef
28.
go back to reference Li K., Qu L., Sun B., Li C.: New results about the boomerang uniformity of permutation polynomials. IEEE Trans. Inf. Theory 65(11), 7542–7553 (2019).MathSciNetCrossRef Li K., Qu L., Sun B., Li C.: New results about the boomerang uniformity of permutation polynomials. IEEE Trans. Inf. Theory 65(11), 7542–7553 (2019).MathSciNetCrossRef
29.
go back to reference Li N., Xiong M., Zeng X.: On permutation quadrinomials and \(4\)-uniform BCT. IEEE Trans. Inf. Theory 67(7), 4845–4855 (2021).MathSciNetCrossRef Li N., Xiong M., Zeng X.: On permutation quadrinomials and \(4\)-uniform BCT. IEEE Trans. Inf. Theory 67(7), 4845–4855 (2021).MathSciNetCrossRef
30.
go back to reference Lidl R., Mullen G.L., Turnwald G.: Dickson Polynomials. Pitman Monogr. Surv. Pure Appl. Math., vol. 65. Longman Scientific & Technical, Harlow (1993). Lidl R., Mullen G.L., Turnwald G.: Dickson Polynomials. Pitman Monogr. Surv. Pure Appl. Math., vol. 65. Longman Scientific & Technical, Harlow (1993).
31.
go back to reference Matsui M.: Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology-EUROCRYPT’93, pp. 386–397. Springer, Berlin (1994).MATH Matsui M.: Linear Cryptanalysis Method for DES Cipher, Advances in Cryptology-EUROCRYPT’93, pp. 386–397. Springer, Berlin (1994).MATH
32.
go back to reference Mesnager S., Kim K.H., Choe J.H., Lee D.N., Go D.S.: Solving \(x+x^{2^l}+\cdots +x^{2^{ml}}=a\) over \({\mathbb{F}}{2^n}\). Cryptogr. Commun. 12(4), 809–817 (2020).MathSciNetCrossRef Mesnager S., Kim K.H., Choe J.H., Lee D.N., Go D.S.: Solving \(x+x^{2^l}+\cdots +x^{2^{ml}}=a\) over \({\mathbb{F}}{2^n}\). Cryptogr. Commun. 12(4), 809–817 (2020).MathSciNetCrossRef
33.
go back to reference Mesnager S., Tang C., Xiong M.: On the boomerang uniformity of quadratic permutations. Des. Codes Cryptogr. 88(10), 2233–2246 (2020).MathSciNetCrossRef Mesnager S., Tang C., Xiong M.: On the boomerang uniformity of quadratic permutations. Des. Codes Cryptogr. 88(10), 2233–2246 (2020).MathSciNetCrossRef
34.
go back to reference Nyberg K.: On the construction of highly nonlinear permutations. Advances in Cryptology—EUROCRYPT’92, Lecture Notes in Computer Science, vol. 658, pp. 92–98. Springer, Berlin (1993). Nyberg K.: On the construction of highly nonlinear permutations. Advances in Cryptology—EUROCRYPT’92, Lecture Notes in Computer Science, vol. 658, pp. 92–98. Springer, Berlin (1993).
35.
go back to reference Nyberg K.: Differentially uniform mappings for cryptography. In: Proceedings of EUROCRYPT’93, Lecture Notes in Computer Science 765, pp. 55–64, 1994. See also Helleseth T (ed.) Advances in Cryptology (Lecture Notes in Computer Science), vol. 765, pp. 134–144. Springer, Berlin (1994). Nyberg K.: Differentially uniform mappings for cryptography. In: Proceedings of EUROCRYPT’93, Lecture Notes in Computer Science 765, pp. 55–64, 1994. See also Helleseth T (ed.) Advances in Cryptology (Lecture Notes in Computer Science), vol. 765, pp. 134–144. Springer, Berlin (1994).
36.
go back to reference Peng J., Tan C.H.: New differentially 4-uniform permutations by modifying the inverse function on subfields. Cryptogr. Commun. 9(3), 363–378 (2017).MathSciNetCrossRef Peng J., Tan C.H.: New differentially 4-uniform permutations by modifying the inverse function on subfields. Cryptogr. Commun. 9(3), 363–378 (2017).MathSciNetCrossRef
37.
go back to reference Perrin L., Udovenko A., Biryukov A.: Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem. In: CRYPTO’16, pp. 93–122 (2016). Perrin L., Udovenko A., Biryukov A.: Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem. In: CRYPTO’16, pp. 93–122 (2016).
38.
go back to reference Qu L., Tan Y., Li C., Gong G.: More constructions of differentially 4-uniform permutations on \(\mathbb{F}_{2^{2k}}\). Des. Codes Cryptogr. 78(2), 391–408 (2016).MathSciNetMATH Qu L., Tan Y., Li C., Gong G.: More constructions of differentially 4-uniform permutations on \(\mathbb{F}_{2^{2k}}\). Des. Codes Cryptogr. 78(2), 391–408 (2016).MathSciNetMATH
39.
go back to reference Tan Y., Qu L., Tan C. H., Li C.: New families of differentially 4-uniform permutations over \({\mathbb{F}}_{2^{2k}}\). In: Helleseth T, Jedwab J (eds.) Sequences and Their Applications, Lecture Notes in Computer Science, vol. 7280, pp. 25–39. Springer, Berlin (2012). Tan Y., Qu L., Tan C. H., Li C.: New families of differentially 4-uniform permutations over \({\mathbb{F}}_{2^{2k}}\). In: Helleseth T, Jedwab J (eds.) Sequences and Their Applications, Lecture Notes in Computer Science, vol. 7280, pp. 25–39. Springer, Berlin (2012).
40.
go back to reference Tang D., Carlet C., Tang X.: Differentially 4-uniform bijections by permuting the inverse function. Des. Codes Cryptogr. 77(1), 117–141 (2015).MathSciNetCrossRef Tang D., Carlet C., Tang X.: Differentially 4-uniform bijections by permuting the inverse function. Des. Codes Cryptogr. 77(1), 117–141 (2015).MathSciNetCrossRef
41.
go back to reference Tu Z., Li N., Zeng X., Zhou J.: A class of quadrinomial permutations with boomerang uniformity four. IEEE Trans. Inf. Theory 66(6), 3753–3765 (2020).MathSciNetCrossRef Tu Z., Li N., Zeng X., Zhou J.: A class of quadrinomial permutations with boomerang uniformity four. IEEE Trans. Inf. Theory 66(6), 3753–3765 (2020).MathSciNetCrossRef
42.
43.
go back to reference Tu Z., Zeng X., Helleseth T.: New permutation quadrinomials over \(\rm GF({2}^{2m})\). Finite Fields Appl. 50, 304–318 (2018).MathSciNetCrossRef Tu Z., Zeng X., Helleseth T.: New permutation quadrinomials over \(\rm GF({2}^{2m})\). Finite Fields Appl. 50, 304–318 (2018).MathSciNetCrossRef
44.
go back to reference Wagner D.: The boomerang Attack. In: Knudsen L.R. (ed.) Fast Software Encryption, vol. 1636 of Lecture Notes in Computer Science, pp. 156–170. Springer (1999). Wagner D.: The boomerang Attack. In: Knudsen L.R. (ed.) Fast Software Encryption, vol. 1636 of Lecture Notes in Computer Science, pp. 156–170. Springer (1999).
45.
go back to reference Zieve M.E.: On some permutation polynomials over \(\mathbb{F}_q\) of the form \(x^rh(x^{(q-1)/d})\). Proc. Am. Math. Soc. 137(7), 2209–2216 (2009).CrossRef Zieve M.E.: On some permutation polynomials over \(\mathbb{F}_q\) of the form \(x^rh(x^{(q-1)/d})\). Proc. Am. Math. Soc. 137(7), 2209–2216 (2009).CrossRef
Metadata
Title
On permutation quadrinomials with boomerang uniformity 4 and the best-known nonlinearity
Authors
Kwang Ho Kim
Sihem Mesnager
Jong Hyok Choe
Dok Nam Lee
Sengsan Lee
Myong Chol Jo
Publication date
07-05-2022
Publisher
Springer US
Published in
Designs, Codes and Cryptography / Issue 6/2022
Print ISSN: 0925-1022
Electronic ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-022-01047-x

Premium Partner