Skip to main content
Top
Published in:

15-06-2023

On Progressively Censored Generalized X-Exponential Distribution: (Non) Bayesian Estimation with an Application to Bladder Cancer Data

Authors: Kousik Maiti, Suchandan Kayal, Aditi Kar Gangopadhyay

Published in: Annals of Data Science | Issue 5/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article addresses estimation of the parameters and reliability characteristics of a generalized X-Exponential distribution based on the progressive type-II censored sample. The maximum likelihood estimates (MLEs) are obtained. The uniqueness and existence of the MLEs are studied. The Bayes estimates are obtained under squared error and entropy loss functions. For computation of the Bayes estimates, Markov Chain Monte Carlo method is used. Bootstrap-t and bootstrap-p methods are used to compute the interval estimates. Further, a simulation study is performed to compare the performance of the proposed estimates. Finally, a real-life dataset is considered and analysed for illustrative purposes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Lawless JF (2011) Statistical Models and Methods for Lifetime Data, vol 362. Wiley, London Lawless JF (2011) Statistical Models and Methods for Lifetime Data, vol 362. Wiley, London
2.
go back to reference Bain L, Englehardt M (1991) Statistical analysis of reliability and life-testing models: theory and methods, vol 115. CRC Press Bain L, Englehardt M (1991) Statistical analysis of reliability and life-testing models: theory and methods, vol 115. CRC Press
3.
go back to reference Miller J, Rupert G (2011) Survival analysis, vol 66. Wiley, London Miller J, Rupert G (2011) Survival analysis, vol 66. Wiley, London
4.
go back to reference Cohen AC (2016) Truncated and censored samples: theory and applications. CRC Press Cohen AC (2016) Truncated and censored samples: theory and applications. CRC Press
5.
go back to reference Balakrishnan N, Aggarwala R (2000) Progressive Censoring: Theory, Methods, and Applications. Birkhauser, BostonCrossRef Balakrishnan N, Aggarwala R (2000) Progressive Censoring: Theory, Methods, and Applications. Birkhauser, BostonCrossRef
6.
go back to reference Balakrishnan N, Cramer E (2014) The Art of Progressive Censoring. Springer, New YorkCrossRef Balakrishnan N, Cramer E (2014) The Art of Progressive Censoring. Springer, New YorkCrossRef
7.
go back to reference Balakrishnan N (2007) Progressive censoring methodology: an appraisal. TEST 16(2):211–259CrossRef Balakrishnan N (2007) Progressive censoring methodology: an appraisal. TEST 16(2):211–259CrossRef
8.
go back to reference Chacko V (2016) X-Exponential bathtub failure rate model. Reliab: Theory Appl 4(43):55–66 Chacko V (2016) X-Exponential bathtub failure rate model. Reliab: Theory Appl 4(43):55–66
9.
go back to reference Chacko V, Deepthi K (2019) Generalized x-exponential bathtub shaped failure rate distribution. J Indian Soc Probab Stat 20(2):157–171CrossRef Chacko V, Deepthi K (2019) Generalized x-exponential bathtub shaped failure rate distribution. J Indian Soc Probab Stat 20(2):157–171CrossRef
10.
go back to reference Khan MS, King R, Hudson I (2013) Characterizations of the transmuted inverse Weibull distribution. Anziam J 55:C197–C217 Khan MS, King R, Hudson I (2013) Characterizations of the transmuted inverse Weibull distribution. Anziam J 55:C197–C217
11.
go back to reference Kumar D, Singh U, Singh SK (2015) A method of proposing new distribution and its application to Bladder cancer patients data. J Stat Appl Probab Lett 2(3):235–245 Kumar D, Singh U, Singh SK (2015) A method of proposing new distribution and its application to Bladder cancer patients data. J Stat Appl Probab Lett 2(3):235–245
12.
go back to reference Kumar D, Singh U, Singh SK (2015) A new distribution using sine function-its application to bladder cancer patients data. J Stat Appl Probab 4(3):417 Kumar D, Singh U, Singh SK (2015) A new distribution using sine function-its application to bladder cancer patients data. J Stat Appl Probab 4(3):417
13.
go back to reference Rady E-HA, Hassanein W, Elhaddad T (2016) The power lomax distribution with an application to bladder cancer data. Springerplus 5:1–22CrossRef Rady E-HA, Hassanein W, Elhaddad T (2016) The power lomax distribution with an application to bladder cancer data. Springerplus 5:1–22CrossRef
14.
go back to reference Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B (2023) Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 157:114062CrossRef Zhang C, Zhao J, Wang W, Geng H, Wang Y, Gao B (2023) Current advances in the application of nanomedicine in bladder cancer. Biomed Pharmacother 157:114062CrossRef
15.
go back to reference Klakattawi HS, Baharith LA, Al-Dayian GR (2011) Bayesian and non Bayesian estimations on the exponentiated modified Weibull distribution for progressive censored sample. Commun Stat-Simul Comput 40(9):1291–1309CrossRef Klakattawi HS, Baharith LA, Al-Dayian GR (2011) Bayesian and non Bayesian estimations on the exponentiated modified Weibull distribution for progressive censored sample. Commun Stat-Simul Comput 40(9):1291–1309CrossRef
16.
go back to reference Raqab MZ, Madi MT (2011) Inference for the generalized Rayleigh distribution based on progressively censored data. J Stat Plan Inference 141(10):3313–3322CrossRef Raqab MZ, Madi MT (2011) Inference for the generalized Rayleigh distribution based on progressively censored data. J Stat Plan Inference 141(10):3313–3322CrossRef
17.
go back to reference Rastogi MK, Tripathi YM (2014) Parameter and reliability estimation for an exponentiated half-logistic distribution under progressive type II censoring. J Stat Comput Simul 84(8):1711–1727CrossRef Rastogi MK, Tripathi YM (2014) Parameter and reliability estimation for an exponentiated half-logistic distribution under progressive type II censoring. J Stat Comput Simul 84(8):1711–1727CrossRef
18.
go back to reference Lee K, Cho Y (2017) Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type II censoring. J Appl Stat 44(5):811–832CrossRef Lee K, Cho Y (2017) Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type II censoring. J Appl Stat 44(5):811–832CrossRef
19.
go back to reference Tarvirdizade B, Nematollahi N (2021) Inference for the power-exponential hazard rate distribution under progressive type-II censored data. J Stat Manag Syst 24(6):1169–1212 Tarvirdizade B, Nematollahi N (2021) Inference for the power-exponential hazard rate distribution under progressive type-II censored data. J Stat Manag Syst 24(6):1169–1212
20.
go back to reference Maiti K, Kayal S (2022) Estimation, prediction and life testing plan for the exponentiated gumbel type-II progressive censored data: Accepted: February 2022. REVSTAT-Statistical Journal Maiti K, Kayal S (2022) Estimation, prediction and life testing plan for the exponentiated gumbel type-II progressive censored data: Accepted: February 2022. REVSTAT-Statistical Journal
21.
go back to reference Balakrishnan N, Sandhu R (1995) A simple simulational algorithm for generating progressive type-II censored samples. Am Stat 49(2):229–230CrossRef Balakrishnan N, Sandhu R (1995) A simple simulational algorithm for generating progressive type-II censored samples. Am Stat 49(2):229–230CrossRef
22.
go back to reference Arnold BC, Press SJ (1983) Bayesian inference for Pareto populations. J Econom 21(3):287–306CrossRef Arnold BC, Press SJ (1983) Bayesian inference for Pareto populations. J Econom 21(3):287–306CrossRef
23.
go back to reference Chen Q, Gui W (2022) Statistical inference of the generalized inverted exponential distribution under joint progressively type-II censoring. Entropy 24(5):576CrossRef Chen Q, Gui W (2022) Statistical inference of the generalized inverted exponential distribution under joint progressively type-II censoring. Entropy 24(5):576CrossRef
24.
go back to reference Smith AF, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc: Ser B (Methodol) 55(1):3–23CrossRef Smith AF, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J R Stat Soc: Ser B (Methodol) 55(1):3–23CrossRef
25.
go back to reference Upadhyay S, Vasishta N, Smith A (2001) Bayes inference in life testing and reliability via Markov chain Monte Carlo simulation. Sankhyā: Indian J Stat Ser A (1961–2002), 63(1):15–40 Upadhyay S, Vasishta N, Smith A (2001) Bayes inference in life testing and reliability via Markov chain Monte Carlo simulation. Sankhyā: Indian J Stat Ser A (1961–2002), 63(1):15–40
26.
go back to reference Maiti K, Kayal S (2021) Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive type-II censored sample. Commun Stat - Simul Comput 50(11):3669–3698CrossRef Maiti K, Kayal S (2021) Estimation of parameters and reliability characteristics for a generalized Rayleigh distribution under progressive type-II censored sample. Commun Stat - Simul Comput 50(11):3669–3698CrossRef
27.
go back to reference Lee ET, Wang J (2003) Statistical Methods for Survival Data Analysis, vol 476. Wiley, LondonCrossRef Lee ET, Wang J (2003) Statistical Methods for Survival Data Analysis, vol 476. Wiley, LondonCrossRef
28.
go back to reference Lemonte AJ (2013) A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function. Comput Stat Data Anal 62:149–170CrossRef Lemonte AJ (2013) A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function. Comput Stat Data Anal 62:149–170CrossRef
29.
go back to reference Lemonte AJ, Cordeiro GM (2011) The exponentiated generalized inverse Gaussian distribution. Stat Prob Lett 81(4):506–517CrossRef Lemonte AJ, Cordeiro GM (2011) The exponentiated generalized inverse Gaussian distribution. Stat Prob Lett 81(4):506–517CrossRef
30.
go back to reference Basheer AM (2022) Marshall–Olkin alpha power inverse exponential distribution: properties and applications. Ann Data Sci 9(2):301–313CrossRef Basheer AM (2022) Marshall–Olkin alpha power inverse exponential distribution: properties and applications. Ann Data Sci 9(2):301–313CrossRef
31.
go back to reference Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Adv Big Data Anal, Springer, Singapore Shi Y (2022) Advances in big data analytics: theory, algorithm and practice. Adv Big Data Anal, Springer, Singapore
32.
go back to reference Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
33.
go back to reference Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
34.
go back to reference Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef Tien JM (2017) Internet of things, real-time decision making, and artificial intelligence. Ann Data Sci 4(2):149–178CrossRef
Metadata
Title
On Progressively Censored Generalized X-Exponential Distribution: (Non) Bayesian Estimation with an Application to Bladder Cancer Data
Authors
Kousik Maiti
Suchandan Kayal
Aditi Kar Gangopadhyay
Publication date
15-06-2023
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 5/2024
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-023-00477-1

Premium Partner