Skip to main content
main-content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

On Rational Bianchi Newforms and Abelian Surfaces with Quaternionic Multiplication

Authors : J. E. Cremona, Lassina Dembélé, Ariel Pacetti, Ciaran Schembri, John Voight

Published in: Arithmetic Geometry, Number Theory, and Computation

Publisher: Springer International Publishing

share
SHARE

Abstract

We study the rational Bianchi newforms (weight 2, trivial character, with rational Hecke eigenvalues) in the LMFDB that are not associated to elliptic curves, but instead to abelian surfaces with quaternionic multiplication. Two of these examples exhibit a rather special kind of behaviour: we show they arise from twisted base change of a classical newform with nebentypus character of order 4 and eight inner twists.
Footnotes
1
Here, 2.​0.​7.​1 is the LMFDB label for the base field \(K=\mathbb {Q}(\sqrt {-7})\) and 30625.1 the label for the level ideal (175), which has norm 30625. The final c is the alphabetic label for this specific newform at that level. We use either full labels such as 2.​0.​7.​1-30625.​1-c for Bianchi newforms, or the shorter version 30625.​1-c which omits the field when that is clear from the context.
 
Literature
[BCP97]
go back to reference Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993). Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
[BDPŞ15]
go back to reference Tobias Berger, Lassina Dembélé, Ariel Pacetti, and Mehmet Haluk Şengün. Theta lifts of Bianchi modular forms and applications to paramodularity. J. Lond. Math. Soc. (2), 92(2):353–370, 2015. Tobias Berger, Lassina Dembélé, Ariel Pacetti, and Mehmet Haluk Şengün. Theta lifts of Bianchi modular forms and applications to paramodularity. J. Lond. Math. Soc. (2), 92(2):353–370, 2015.
[BK14]
go back to reference Armand Brumer and Kenneth Kramer. Paramodular abelian varieties of odd conductor. Trans. Amer. Math. Soc., 366(5):2463–2516, 2014. MathSciNetCrossRef Armand Brumer and Kenneth Kramer. Paramodular abelian varieties of odd conductor. Trans. Amer. Math. Soc., 366(5):2463–2516, 2014. MathSciNetCrossRef
[BPPTVY]
go back to reference Armand Brumer, Ariel Pacetti, Cris Poor, Gonzalo Tornaría, John Voight, and David Yuen. On the paramodularity of typical abelian surfaces. Algebra & Number Theory 13(5):1145–1195, 2019. MathSciNetCrossRef Armand Brumer, Ariel Pacetti, Cris Poor, Gonzalo Tornaría, John Voight, and David Yuen. On the paramodularity of typical abelian surfaces. Algebra & Number Theory 13(5):1145–1195, 2019. MathSciNetCrossRef
[BS15]
go back to reference Florian Bouyer and Marco Streng. Examples of CM curves of genus two defined over the reflex field. LMS J. Comput. Math., 18(1):507–538, 2015. MathSciNetCrossRef Florian Bouyer and Marco Streng. Examples of CM curves of genus two defined over the reflex field. LMS J. Comput. Math., 18(1):507–538, 2015. MathSciNetCrossRef
[Buz97]
[Cre84]
go back to reference J. E. Cremona. Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. Compositio Mathematica, 51:275–323, 1984. MathSciNetMATH J. E. Cremona. Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. Compositio Mathematica, 51:275–323, 1984. MathSciNetMATH
[Cre92]
go back to reference J. E. Cremona. Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields. J. London Math. Soc. (2), 45(3):404–416, 1992. MathSciNetCrossRef J. E. Cremona. Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields. J. London Math. Soc. (2), 45(3):404–416, 1992. MathSciNetCrossRef
[Del71]
go back to reference Pierre Deligne. Travaux de Shimura. pages 123–165. Lecture Notes in Math., Vol. 244, 1971. Pierre Deligne. Travaux de Shimura. pages 123–165. Lecture Notes in Math., Vol. 244, 1971.
[DGP10]
go back to reference Luis Dieulefait, Lucio Guerberoff, and Ariel Pacetti. Proving modularity for a given elliptic curve over an imaginary quadratic field. Math. Comp., 79(270):1145–1170, 2010. MathSciNetCrossRef Luis Dieulefait, Lucio Guerberoff, and Ariel Pacetti. Proving modularity for a given elliptic curve over an imaginary quadratic field. Math. Comp., 79(270):1145–1170, 2010. MathSciNetCrossRef
[DN70]
go back to reference Koji Doi and Hidehisa Naganuma. On the functional equation of certain Dirichlet series. Invent. Math., 9:1–14, 1969/1970. MathSciNetCrossRef Koji Doi and Hidehisa Naganuma. On the functional equation of certain Dirichlet series. Invent. Math., 9:1–14, 1969/1970. MathSciNetCrossRef
[DR73]
go back to reference P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. pages 143–316. Lecture Notes in Math., Vol. 349, 1973. P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. pages 143–316. Lecture Notes in Math., Vol. 349, 1973.
[Elk98]
go back to reference Noam D. Elkies. Shimura curve computations. In Algorithmic number theory (Portland, OR, 1998), volume 1423 of Lecture Notes in Comput. Sci., pages 1–47. Springer, Berlin, 1998. Noam D. Elkies. Shimura curve computations. In Algorithmic number theory (Portland, OR, 1998), volume 1423 of Lecture Notes in Comput. Sci., pages 1–47. Springer, Berlin, 1998.
[Fri83]
go back to reference Solomon Friedberg. On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary level. Nagoya Math. J., 92:1–20, 1983. MathSciNetCrossRef Solomon Friedberg. On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary level. Nagoya Math. J., 92:1–20, 1983. MathSciNetCrossRef
[GL79]
go back to reference P. Gérardin and J.-P. Labesse. The solution of a base change problem for GL(2) (following Langlands, Saito, Shintani). In Automorphic forms, representations and L- functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 115–133. Amer. Math. Soc., Providence, R.I., 1979. P. Gérardin and J.-P. Labesse. The solution of a base change problem for GL(2) (following Langlands, Saito, Shintani). In Automorphic forms, representations and L- functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pages 115–133. Amer. Math. Soc., Providence, R.I., 1979.
[GY17]
[JR14]
go back to reference John Jones and David Roberts. A database of number fields. LMS Journal of Computation and Mathematics, 17(1):595–618, 2014. MathSciNetCrossRef John Jones and David Roberts. A database of number fields. LMS Journal of Computation and Mathematics, 17(1):595–618, 2014. MathSciNetCrossRef
[JL85]
go back to reference Bruce W. Jordan and Ron A. Livné. Local Diophantine properties of Shimura curves. Math. Ann., 270(2):235–248, 1985. MathSciNetCrossRef Bruce W. Jordan and Ron A. Livné. Local Diophantine properties of Shimura curves. Math. Ann., 270(2):235–248, 1985. MathSciNetCrossRef
[Jor81]
go back to reference Bruce Winchester Jordan. On The Diophantine Arithmetic of Shimura Curves. ProQuest LLC, Ann Arbor, MI, 1981. Thesis (Ph.D.)–Harvard University. Bruce Winchester Jordan. On The Diophantine Arithmetic of Shimura Curves. ProQuest LLC, Ann Arbor, MI, 1981. Thesis (Ph.D.)–Harvard University.
[Kid95]
[Lan80]
go back to reference Robert P. Langlands. Base change for GL(2), volume 96 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980. Robert P. Langlands. Base change for GL(2), volume 96 of Annals of Mathematics Studies. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1980.
[LR98]
go back to reference Erez Lapid and Jonathan Rogawski. On twists of cuspidal representations of GL(2). Forum Math., 10(2):175–197, 1998. MathSciNetCrossRef Erez Lapid and Jonathan Rogawski. On twists of cuspidal representations of GL(2). Forum Math., 10(2):175–197, 1998. MathSciNetCrossRef
[Pyl04]
go back to reference Elisabeth E. Pyle. Abelian varieties over \(\mathbb Q\) with large endomorphism algebras and their simple components over \(\overline {\mathbb Q}\). In Modular curves and abelian varieties, volume 224 of Progr. Math., pages 189–239. Birkhäuser, Basel, 2004. Elisabeth E. Pyle. Abelian varieties over \(\mathbb Q\) with large endomorphism algebras and their simple components over \(\overline {\mathbb Q}\). In Modular curves and abelian varieties, volume 224 of Progr. Math., pages 189–239. Birkhäuser, Basel, 2004.
[Que09]
[Ram00]
go back to reference Dinakar Ramakrishnan. Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). Ann. of Math. (2), 152(1):45–111, 2000. MathSciNetCrossRef Dinakar Ramakrishnan. Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2). Ann. of Math. (2), 152(1):45–111, 2000. MathSciNetCrossRef
[Rib80]
go back to reference Kenneth A. Ribet. Twists of modular forms and endomorphisms of abelian varieties. Math. Ann., 253(1):43–62, 1980. MathSciNetCrossRef Kenneth A. Ribet. Twists of modular forms and endomorphisms of abelian varieties. Math. Ann., 253(1):43–62, 1980. MathSciNetCrossRef
[Rib04]
go back to reference Kenneth A. Ribet. Abelian varieties over Q and modular forms. In Modular curves and abelian varieties, volume 224 of Progr. Math., pages 241–261. Birkhäuser, Basel, 2004. Kenneth A. Ribet. Abelian varieties over Q and modular forms. In Modular curves and abelian varieties, volume 224 of Progr. Math., pages 241–261. Birkhäuser, Basel, 2004.
[SC03]
go back to reference Michael Stoll and John E. Cremona. On the reduction theory of binary forms. J. Reine Angew. Math., 565:79–99, 2003. MathSciNetMATH Michael Stoll and John E. Cremona. On the reduction theory of binary forms. J. Reine Angew. Math., 565:79–99, 2003. MathSciNetMATH
[Sch19]
go back to reference Ciaran Schembri. Examples of genuine QM abelian surfaces which are modular. Res. Number Theory, 5(1):Art. 11, 12, 2019. Ciaran Schembri. Examples of genuine QM abelian surfaces which are modular. Res. Number Theory, 5(1):Art. 11, 12, 2019.
[Shi67]
go back to reference Goro Shimura. Construction of class fields and zeta functions of algebraic curves. Ann. of Math. (2), 85:58–159, 1967. MathSciNetCrossRef Goro Shimura. Construction of class fields and zeta functions of algebraic curves. Ann. of Math. (2), 85:58–159, 1967. MathSciNetCrossRef
[Shi94]
go back to reference Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kanô Memorial Lectures, 1. Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11 of Publications of the Mathematical Society of Japan. Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original, Kanô Memorial Lectures, 1.
[Tay94]
go back to reference Richard Taylor. l-adic representations associated to modular forms over imaginary quadratic fields. II. Invent. Math., 116(1-3):619–643, 1994. Richard Taylor. l-adic representations associated to modular forms over imaginary quadratic fields. II. Invent. Math., 116(1-3):619–643, 1994.
[Tay95]
go back to reference Richard Taylor. Representations of Galois groups associated to modular forms. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 435–442. Birkhäuser, Basel, 1995. Richard Taylor. Representations of Galois groups associated to modular forms. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 435–442. Birkhäuser, Basel, 1995.
[Ţur18]
go back to reference George C. Ţurcaş. On Fermat’s equation over some quadratic imaginary number fields. Res. Number Theory, 4(2):Art. 24, 16, 2018. George C. Ţurcaş. On Fermat’s equation over some quadratic imaginary number fields. Res. Number Theory, 4(2):Art. 24, 16, 2018.
Metadata
Title
On Rational Bianchi Newforms and Abelian Surfaces with Quaternionic Multiplication
Authors
J. E. Cremona
Lassina Dembélé
Ariel Pacetti
Ciaran Schembri
John Voight
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-80914-0_11

Premium Partner