Skip to main content
Top

2024 | OriginalPaper | Chapter

On Reinforcement Learning for Part Dispatching in UAV-Served Flexible Manufacturing Systems

Authors : Charikleia Angelidou, Emmanuel Stathatos, George-Christopher Vosniakos

Published in: Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The industrial environment of the past years has been characterized by a high rate of change, pushing the industry to implement innovative technologies to satisfy market needs. Unmanned aerial vehicles (UAVs) and Reinforcement Learning (RL) are being implemented in the manufacturing industry to meet changing market demands for efficiency. This work focuses on using RL for optimal part dispatching in Flexible Manufacturing Systems (FMS) using UAVs. A virtual discrete events model is used to represent the shop floor state and a reward function is defined to maximize production. Proximal Policy Optimization (PPO) is employed to train the RL agent. Results show a production increase of up to 145.16% compared to traditional heuristic rules.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Deja, M., Siemitkowski, M.S., Vosniakos, G.C., Maltezos, G.: Opportunities and challenges for exploiting drones in agile manufacturing systems. Procedia Manuf. 51, 527–534 (2020)CrossRef Deja, M., Siemitkowski, M.S., Vosniakos, G.C., Maltezos, G.: Opportunities and challenges for exploiting drones in agile manufacturing systems. Procedia Manuf. 51, 527–534 (2020)CrossRef
2.
go back to reference Maghazei, O., Netland, T.: Drones in manufacturing: exploring opportunities for research and practice. J. Manuf. Technol. Manag. 31, 1237–1259 (2020)CrossRef Maghazei, O., Netland, T.: Drones in manufacturing: exploring opportunities for research and practice. J. Manuf. Technol. Manag. 31, 1237–1259 (2020)CrossRef
3.
go back to reference Yang, J., You, X., Wu, G., Hassan, M.M., Almogren, A., Guna, J.: Application of reinforcement learning in UAV cluster task scheduling. Futur. Gener. Comput. Syst. 95, 140–148 (2019)CrossRef Yang, J., You, X., Wu, G., Hassan, M.M., Almogren, A., Guna, J.: Application of reinforcement learning in UAV cluster task scheduling. Futur. Gener. Comput. Syst. 95, 140–148 (2019)CrossRef
4.
go back to reference Bouazza, W., Sallez, Y., Beldjilali, B.: A distributed approach solving partially flexible job-shop scheduling problem with a q-learning effect. IFAC-PapersOnLine 50, 15890–15895 (2017)CrossRef Bouazza, W., Sallez, Y., Beldjilali, B.: A distributed approach solving partially flexible job-shop scheduling problem with a q-learning effect. IFAC-PapersOnLine 50, 15890–15895 (2017)CrossRef
5.
go back to reference Kuhnle, A., Schäfer, L., Stricker, N., Lanza, G.: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems. Procedia CIRP 81, 234–239 (2019)CrossRef Kuhnle, A., Schäfer, L., Stricker, N., Lanza, G.: Design, implementation and evaluation of reinforcement learning for an adaptive order dispatching in job shop manufacturing systems. Procedia CIRP 81, 234–239 (2019)CrossRef
6.
go back to reference Qu, S., Wang, J., Govil, S., Leckie, J.O.: Optimized adaptive scheduling of a manufacturing process system with multi-skill workforce and multiple machine types: An ontology-based, multi-agent reinforcement learning approach. Procedia CIRP 57, 55–60 (2016)CrossRef Qu, S., Wang, J., Govil, S., Leckie, J.O.: Optimized adaptive scheduling of a manufacturing process system with multi-skill workforce and multiple machine types: An ontology-based, multi-agent reinforcement learning approach. Procedia CIRP 57, 55–60 (2016)CrossRef
7.
go back to reference Kardos, C., Gallina, V., Sihn, W., Laflamme, C.: Dynamic scheduling in a job-shop production system with reinforcement learning. Procedia CIRP 97, 104–109 (2020)CrossRef Kardos, C., Gallina, V., Sihn, W., Laflamme, C.: Dynamic scheduling in a job-shop production system with reinforcement learning. Procedia CIRP 97, 104–109 (2020)CrossRef
8.
go back to reference Sutton, R.S., Barto, A.G.: Reinforcement learning, second edition: An introduction - complete draft. The MIT Press, pp. 1–3 (2018) Sutton, R.S., Barto, A.G.: Reinforcement learning, second edition: An introduction - complete draft. The MIT Press, pp. 1–3 (2018)
9.
go back to reference Allen, M., Spencer, A., Gibson, A., Matthews, J., Allwood, A., Prosser, S., Pitt, M.: Right cot, right place, right time: improving the design and organisation of neonatal care networks - a computer simulation study. Health Serv. Delivery Res. 3, 1–128 (2015)CrossRef Allen, M., Spencer, A., Gibson, A., Matthews, J., Allwood, A., Prosser, S., Pitt, M.: Right cot, right place, right time: improving the design and organisation of neonatal care networks - a computer simulation study. Health Serv. Delivery Res. 3, 1–128 (2015)CrossRef
10.
go back to reference Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems, p. 769 (2008) Cassandras, C.G., Lafortune, S.: Introduction to discrete event systems, p. 769 (2008)
11.
go back to reference Gray, M.: Discrete event simulation: a review of simevents. Comput. Sci. Eng. 9, 62–66 (2007)CrossRef Gray, M.: Discrete event simulation: a review of simevents. Comput. Sci. Eng. 9, 62–66 (2007)CrossRef
12.
go back to reference Bateman, R., Bowden, T.G.C.H., Mott, J.: System improvement using simulation 5 (1997) Bateman, R., Bowden, T.G.C.H., Mott, J.: System improvement using simulation 5 (1997)
Metadata
Title
On Reinforcement Learning for Part Dispatching in UAV-Served Flexible Manufacturing Systems
Authors
Charikleia Angelidou
Emmanuel Stathatos
George-Christopher Vosniakos
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-38165-2_57

Premium Partner