Skip to main content
Top

2014 | OriginalPaper | Chapter

On Set Expansion Problems and the Small Set Expansion Conjecture

Authors : Rajiv Gandhi, Guy Kortsarz

Published in: Graph-Theoretic Concepts in Computer Science

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We study two problems related to the Small Set Expansion Conjecture [14]: the Maximum weight \(m'\) -edge cover (MWEC) problem and the Fixed cost minimum edge cover (FCEC) problem. In the MWEC problem, we are given an undirected simple graph \(G=(V,E)\) with integral vertex weights. The goal is to select a set \(U\subseteq V\) of maximum weight so that the number of edges with at least one endpoint in \(U\) is at most \(m'\). Goldschmidt and Hochbaum [8] show that the problem is NP-hard and they give a \(3\)-approximation algorithm for the problem. The approximation guarantee was improved to \(2+\epsilon \), for any fixed \(\epsilon > 0\) [12]. We present an approximation algorithm that achieves a guarantee of \(2\). Interestingly, we also show that for any constant \(\epsilon > 0\), a \((2-\epsilon )\)-ratio for MWEC implies that the Small Set Expansion Conjecture [14] does not hold. Thus, assuming the Small Set Expansion Conjecture, the bound of 2 is tight. In the FCEC problem, we are given a vertex weighted graph, a bound \(k\), and our goal is to find a subset of vertices \(U\) of total weight at least \(k\) such that the number of edges with at least one edges in \(U\) is minimized. A \(2(1+\epsilon )\)-approximation for the problem follows from the work of Carnes and Shmoys [3]. We improve the approximation ratio by giving a \(2\)-approximation algorithm for the problem and show a \((2-\epsilon )\)-inapproximability under Small Set Expansion Conjecture conjecture. Only the NP-hardness result was known for this problem [8]. We show that a natural linear program for FCEC has an integrality gap of \(2-o(1)\). We also show that for any constant \(\rho >1\), an approximation guarantee of \(\rho \) for the FCEC problem implies a \(\rho (1+o(1))\) approximation for MWEC. Finally, we define the Degrees density augmentation problem which is the density version of the FCEC problem. In this problem we are given an undirected graph \(G=(V,E)\) and a set \(U\subseteq V\). The objective is to find a set \(W\) so that \((e(W)+e(U,W))/deg(W)\) is maximum. This problem admits an LP-based exact solution [4]. We give a combinatorial algorithm for this problem.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 25–37. Springer, Heidelberg (2009)CrossRef Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 25–37. Springer, Heidelberg (2009)CrossRef
2.
go back to reference Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A: Detecting high log-densities: an O\((n^{1/4})\) approximation for densest k-subgraph. In: STOC, pp. 201–210 (2010) Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A: Detecting high log-densities: an O\((n^{1/4})\) approximation for densest k-subgraph. In: STOC, pp. 201–210 (2010)
3.
go back to reference Carnes, T., Shmoys, D.: Primal-dual schema for capacitated covering problems. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 288–302. Springer, Heidelberg (2008)CrossRef Carnes, T., Shmoys, D.: Primal-dual schema for capacitated covering problems. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 288–302. Springer, Heidelberg (2008)CrossRef
4.
go back to reference Chakravarthy, V.\({\rm {\tilde{T}}}\)., Modani, N., Natarajan, S.\({\rm {\tilde{R}}}\), Roy, S., Sabharwal, Y.: Density functions subject to co-matroid constraint. In: Foundations of Software Technology and Theoretical Computer Science, pp. 236–248 (2012) Chakravarthy, V.\({\rm {\tilde{T}}}\)., Modani, N., Natarajan, S.\({\rm {\tilde{R}}}\), Roy, S., Sabharwal, Y.: Density functions subject to co-matroid constraint. In: Foundations of Software Technology and Theoretical Computer Science, pp. 236–248 (2012)
6.
go back to reference Gajewar, A., Sarma, A.: Multi-skill collaborative teams based on densest subgraphs. In: SDM, pp. 165–176 (2012) Gajewar, A., Sarma, A.: Multi-skill collaborative teams based on densest subgraphs. In: SDM, pp. 165–176 (2012)
7.
go back to reference Goldberg, A.V.: Finding a maximum density subgraph. Technical report UCB/CSD-84-171, EECS Department, University of California, Berkeley (1984) Goldberg, A.V.: Finding a maximum density subgraph. Technical report UCB/CSD-84-171, EECS Department, University of California, Berkeley (1984)
9.
go back to reference Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)MathSciNetCrossRefMATH Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)MathSciNetCrossRefMATH
10.
go back to reference Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)CrossRef Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)CrossRef
11.
go back to reference Lawler, Eugene L.: Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston, New York (1976) Lawler, Eugene L.: Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston, New York (1976)
12.
13.
go back to reference Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)CrossRef Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)CrossRef
14.
go back to reference Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture. In: STOC, pp. 755–764 (2010) Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjecture. In: STOC, pp. 755–764 (2010)
Metadata
Title
On Set Expansion Problems and the Small Set Expansion Conjecture
Authors
Rajiv Gandhi
Guy Kortsarz
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-12340-0_16

Premium Partner