Skip to main content
Top

2015 | OriginalPaper | Chapter

On Small-Noise Equations with Degenerate Limiting System Arising from Volatility Models

Authors : Giovanni Conforti, Stefano De Marco, Jean-Dominique Deuschel

Published in: Large Deviations and Asymptotic Methods in Finance

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The one-dimensional SDE with non Lipschitz diffusion coefficient
$$\begin{aligned} \textit{dX}_{t} = b(X_{t})\textit{dt} + \sigma X_{t}^{\gamma } \textit{dB}_{t}, \quad X_{0}=x, \quad \gamma <1 \end{aligned}$$
(1)
  is widely studied in mathematical finance. Several works have proposed asymptotic analysis of densities and implied volatilities in models involving instances of (1), based on a careful implementation of saddle-point methods and (essentially) the explicit knowledge of Fourier transforms. Recent research on tail asymptotics for heat kernels (Deuschel et al. Comm. in Pure and Applied Math., 67(1):40–82, 2014, [11]) suggests to work with the rescaled variable \( X^{\varepsilon }:=\varepsilon ^{1/(1-\gamma )} X\): while allowing to turn a space asymptotic problem into a small-\(\varepsilon \) problem, the process \(X^{\varepsilon }\) satisfies a SDE in Wentzell–Freidlin form (i.e. with driving noise \(\varepsilon \textit{dB}\)). We prove a pathwise large deviation principle for the process \(X^{\varepsilon }\) as \(\varepsilon \rightarrow 0\). As it will be seen, the limiting ODE governing the large deviations admits infinitely many solutions, a non-standard situation in the Wentzell–Freidlin theory. As for applications, the \(\varepsilon \)-scaling allows to derive leading order asymptotics for path functionals: while on the one hand the resulting formulae are confirmed by the CIR-CEV benchmarks, on the other hand the large deviation approach (i) applies to equations with a more general drift term and (ii) potentially opens the way to heat kernel analysis for higher-dimensional diffusions involving (1) as a component.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The precise statement here is https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-11605-1_17/328567_1_En_17_IEq14_HTML.gif .
 
2
When \(\beta =0\), \(\gamma =1/2\) and \(\dot{h}\equiv 1\), one retrieves the textbook example of ODE for which uniqueness fails, \(\dot{\varphi }_{t} = \sigma \sqrt{|\varphi _t|}\), whose solutions from \(\varphi _0=0\) are given by the one-parameter family \(\varphi ^{(\theta )}_t = \frac{\sigma ^2}{4} (t-\theta )^2 1_{\{t \ge \theta \}}\).
 
3
When \(\gamma \in [1/2,1)\), the law of \(X_T\) also possesses an atom at zero, \(\mathbb {P}(X_T=0)=m_T>0\), and an explicit formula for the mass \(m_T\) is available (see again [16, Chap. 6]). From our point of view, this only means that the density \(f_{X_T}\) does not integrate to 1 on \((0,\infty )\), without affecting our analysis of the tail asymptotics at \(\infty \).
 
4
The second derivative reads \(e^{a \varepsilon ^{-2} (1+y)^{2(1-\gamma )}} \times 2a\varepsilon ^{-2}(1-\gamma )(1+y)^{-2\gamma } \times [1-2\gamma +\frac{2a}{\varepsilon ^2}(1-\gamma )\) \((1+y)^{2(1-\gamma )}]\).
 
5
By perturbing the initial condition and the drift in (1.2), one can retrieve the trajectory \(\varphi ^*\) in (3.29) as the limit as \(\rho \rightarrow 0\) of the solution of the equation \(d\varphi _{t} = \rho \,+\,\beta \varphi _t \textit{dt}\,+\,\sigma \varphi _t^{\gamma }dh, \varphi _{0} = \rho \), for which existence and uniqueness hold.
 
Literature
1.
go back to reference Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. Dover, New York (1972)MATH Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. Dover, New York (1972)MATH
3.
go back to reference Azencott, R.: Grandes déviations et applications. Ecole d’été de Probabilités de Saint-Flour VIII-1978. Lecture Notes in Mathematics, vol. 774, pp. 1–176. Springer, Berlin (1980)CrossRef Azencott, R.: Grandes déviations et applications. Ecole d’été de Probabilités de Saint-Flour VIII-1978. Lecture Notes in Mathematics, vol. 774, pp. 1–176. Springer, Berlin (1980)CrossRef
4.
go back to reference Baldi, P., Caramellino, L.: General Freidlin-Wentzell large deviations and positive diffusions. Stat. Probab. Lett. 81, 1218–1229 (2011)MATHMathSciNetCrossRef Baldi, P., Caramellino, L.: General Freidlin-Wentzell large deviations and positive diffusions. Stat. Probab. Lett. 81, 1218–1229 (2011)MATHMathSciNetCrossRef
5.
go back to reference Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Annales scientifiques de l’Ecole Normale Supérieure 4(21), 307–331 (1988)MathSciNet Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique hors du cut-locus. Annales scientifiques de l’Ecole Normale Supérieure 4(21), 307–331 (1988)MathSciNet
6.
go back to reference Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)MATHCrossRef Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)MATHCrossRef
7.
go back to reference Bismut, J.-M.: Large Deviations and the Malliavin Calculus. Birkhäuser, Boston (1984)MATH Bismut, J.-M.: Large Deviations and the Malliavin Calculus. Birkhäuser, Boston (1984)MATH
8.
go back to reference Chiarini, A., Fischer, M.: On large deviations for small noise Itô processes. Adv. Appl. Probab. 46(4), 1126–1147 (2014) Chiarini, A., Fischer, M.: On large deviations for small noise Itô processes. Adv. Appl. Probab. 46(4), 1126–1147 (2014)
9.
go back to reference De Marco, S.: Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions. Ann. Appl. Probab. 4(21), 1282–1321 (2011)CrossRef De Marco, S.: Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions. Ann. Appl. Probab. 4(21), 1282–1321 (2011)CrossRef
10.
go back to reference Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Applications of Mathematics, Springer, New York (1998) Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Applications of Mathematics, Springer, New York (1998)
11.
go back to reference Deuschel, J.-D., Friz, P., Jacquier, A., Violante, S.: Marginal density expansions for diffusions and stochastic volatility, II: Applications. Comm. in Pure and Applied Math. 67(1), 40–82 (2014) Deuschel, J.-D., Friz, P., Jacquier, A., Violante, S.: Marginal density expansions for diffusions and stochastic volatility, II: Applications. Comm. in Pure and Applied Math. 67(1), 40–82 (2014)
12.
go back to reference Deuschel, J-D., Stroock., W.: Large Deviations. Pure and Applied Mathematics. American Mathematical Society, New York, London. Revised edition of: An introduction to the theory of large deviations/D.W. Stroock. cop.1984 (2000) Deuschel, J-D., Stroock., W.: Large Deviations. Pure and Applied Mathematics. American Mathematical Society, New York, London. Revised edition of: An introduction to the theory of large deviations/D.W. Stroock. cop.1984 (2000)
13.
go back to reference Donati-Martin, C., Rouault, A., Yor, M., Zani, M.: Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes. Probab. Theory Relat. Fields 129, 261–289 (2004)MATHMathSciNetCrossRef Donati-Martin, C., Rouault, A., Yor, M., Zani, M.: Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes. Probab. Theory Relat. Fields 129, 261–289 (2004)MATHMathSciNetCrossRef
14.
go back to reference Dufresne, D.: The integrated square-root process. Research Paper no. 90, Centre for Actuarial Studies, University of Melbourne (2001) Dufresne, D.: The integrated square-root process. Research Paper no. 90, Centre for Actuarial Studies, University of Melbourne (2001)
15.
go back to reference Gulisashvili, A.: Asymptotic formulas with error estimates for call pricing functions and the implied volatility at extreme strikes. SIAM J. Financ. Math. 1(1), 609–641 (2010)MATHMathSciNetCrossRef Gulisashvili, A.: Asymptotic formulas with error estimates for call pricing functions and the implied volatility at extreme strikes. SIAM J. Financ. Math. 1(1), 609–641 (2010)MATHMathSciNetCrossRef
16.
go back to reference Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer finance. Springer, Dordrecht, Heidelberg, London (2009) Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer finance. Springer, Dordrecht, Heidelberg, London (2009)
17.
go back to reference Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)MATH Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)MATH
18.
go back to reference Keller-Ressel, M.: Moment explosions and long-term behavior of affine stochastic volatility models. Math. Financ. 21, 73–98 (2011)MATHMathSciNetCrossRef Keller-Ressel, M.: Moment explosions and long-term behavior of affine stochastic volatility models. Math. Financ. 21, 73–98 (2011)MATHMathSciNetCrossRef
19.
go back to reference Klebaner, F., Liptser, R.: Asymptotic analysis of ruin in the constant elasticity of variance model. Theory Probab. Appl. 55(2), 291–297 (2011)MATHMathSciNetCrossRef Klebaner, F., Liptser, R.: Asymptotic analysis of ruin in the constant elasticity of variance model. Theory Probab. Appl. 55(2), 291–297 (2011)MATHMathSciNetCrossRef
20.
go back to reference Leoni, G.: A First Course in Sobolev Spaces. Graduate studies in mathematics. American Mathematical Society, Cambridge (2009)MATHCrossRef Leoni, G.: A First Course in Sobolev Spaces. Graduate studies in mathematics. American Mathematical Society, Cambridge (2009)MATHCrossRef
21.
go back to reference Lions, P.-L., Musiela, M.: Correlations and bounds for stochastic volatility models. Annales de l’Institut H. Poincaré 24, 1–16 (2007)MATHMathSciNetCrossRef Lions, P.-L., Musiela, M.: Correlations and bounds for stochastic volatility models. Annales de l’Institut H. Poincaré 24, 1–16 (2007)MATHMathSciNetCrossRef
22.
go back to reference Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, New York (1999)MATHCrossRef Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, New York (1999)MATHCrossRef
23.
go back to reference Robertson, S.: Sample path large deviations and optimal importance sampling for stochastic volatility models. Stoch. Process. Appl. 120(1), 66–83 (2010)MATHCrossRef Robertson, S.: Sample path large deviations and optimal importance sampling for stochastic volatility models. Stoch. Process. Appl. 120(1), 66–83 (2010)MATHCrossRef
24.
go back to reference Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein-Uhlenbeck process: an extension. Eur. Financ. Rev. 3(1), 23–46 (1999)MATHCrossRef Schöbel, R., Zhu, J.: Stochastic volatility with an Ornstein-Uhlenbeck process: an extension. Eur. Financ. Rev. 3(1), 23–46 (1999)MATHCrossRef
25.
go back to reference Stein, E.M., Stein, J.C.: Stock price distribution with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4, 727–752 (1991)CrossRef Stein, E.M., Stein, J.C.: Stock price distribution with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4, 727–752 (1991)CrossRef
26.
go back to reference Stroock, D., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 233. Springer, Berlin (1979). Reprinted in 2006MATH Stroock, D., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Grundlehren der mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences, vol. 233. Springer, Berlin (1979). Reprinted in 2006MATH
27.
go back to reference Trevisan, D.: Zero noise limits using local times. Electron. Commun. Probab. 18(31), 1–7 (2013)MathSciNet Trevisan, D.: Zero noise limits using local times. Electron. Commun. Probab. 18(31), 1–7 (2013)MathSciNet
Metadata
Title
On Small-Noise Equations with Degenerate Limiting System Arising from Volatility Models
Authors
Giovanni Conforti
Stefano De Marco
Jean-Dominique Deuschel
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-11605-1_17