Skip to main content
Top

2024 | OriginalPaper | Chapter

On Some Gaussian Oresme Numbers

Authors : Serpil Halici, Elifcan Sayin

Published in: Mathematical Methods for Engineering Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sequences with recurrence relations are used in many branches of science such as mathematics, physics and engineering. The most well-known and studied sequence among these is Horadam sequence. This sequence is a generalization of many sequences and has an important place in the literature. New sequences can also be obtained from this sequence by changing the initial conditions. The most common sequences obtained by this method in the literature are Fibonacci sequence, Lucas sequence and Jacobstal sequence. The Fibonacci sequence, which has an important place among these sequences, has been studied by many authors. Horadam, who also worked on Fibonacci sequences, defined these sequences in complex space and discussed Gaussian Fibonacci sequences. A new sequence, which was defined by Nicole Oresme in the fourteenth century and called the Oresme sequence, is a special case of the Horadam sequence whose initial conditions are rational numbers. Subsequently, this was reviewed by many authors. Based on these studies, Gaussian Oresme number sequences were studied.
In this study, we obtained some identities of Gaussian Oresme sequences. We have obtained some sum formulas of Gaussian Oresme numbers. We obtained the matrix for the Gaussian Oresme sequences and calculated the nth power.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Cerda-Morales, G.: Oresme polynomials and their derivatives. arXiv preprint arXiv:1904.01165 (2019) Cerda-Morales, G.: Oresme polynomials and their derivatives. arXiv preprint arXiv:1904.01165 (2019)
2.
go back to reference Cook, C.K.: Some sums related to sums of Oresme numbers. In: Applications of Fibonacci Numbers: Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci Numbers and Their Applications, pp. 87–99. Springer Netherlands, Dordrecht (2004) Cook, C.K.: Some sums related to sums of Oresme numbers. In: Applications of Fibonacci Numbers: Volume 9: Proceedings of The Tenth International Research Conference on Fibonacci Numbers and Their Applications, pp. 87–99. Springer Netherlands, Dordrecht (2004)
3.
go back to reference Dos Santos Mangueira, M.C., Vieira, R.P.M., Alves, F.R.V., Catarino, P.M.M.C.: Corrigendum to The Oresme sequence: The generalization of its matrix form and its. Discrete Math. 27(1), 101–111 (2021) Dos Santos Mangueira, M.C., Vieira, R.P.M., Alves, F.R.V., Catarino, P.M.M.C.: Corrigendum to The Oresme sequence: The generalization of its matrix form and its. Discrete Math. 27(1), 101–111 (2021)
4.
go back to reference Horadam, A.F.: Basic properties of a certain generalized sequence of numbers. Fibonacci Quart. 3(3), 161–176 (1965)MathSciNet Horadam, A.F.: Basic properties of a certain generalized sequence of numbers. Fibonacci Quart. 3(3), 161–176 (1965)MathSciNet
6.
go back to reference Kara, N., Yilmaz, F.: On hybrid numbers with Gaussian Leonardo coefficients. Mathematics 11(6), 1551 (2023)CrossRef Kara, N., Yilmaz, F.: On hybrid numbers with Gaussian Leonardo coefficients. Mathematics 11(6), 1551 (2023)CrossRef
7.
go back to reference Oresme, N.: In: Busard, H.L.L. (ed.) Quaestiones super geometriam Euclidis, 2 vols. Brill, Leiden (1961) Oresme, N.: In: Busard, H.L.L. (ed.) Quaestiones super geometriam Euclidis, 2 vols. Brill, Leiden (1961)
8.
9.
go back to reference Sentürk, G.Y., Gurses, N., Yuce, S.: A New look on Oresme numbers: dual-generalized complex component extension. In: Conference Proceeding Science and Technology, vol. 1, no. 1, pp. 254–265 (2018) Sentürk, G.Y., Gurses, N., Yuce, S.: A New look on Oresme numbers: dual-generalized complex component extension. In: Conference Proceeding Science and Technology, vol. 1, no. 1, pp. 254–265 (2018)
10.
go back to reference Yilmaz, F., Ertas, A.: On quaternions with Gaussian Oresme coefficients. Turk. J. Math. Comput. Sci. 15(1), 192–202 (2023)CrossRef Yilmaz, F., Ertas, A.: On quaternions with Gaussian Oresme coefficients. Turk. J. Math. Comput. Sci. 15(1), 192–202 (2023)CrossRef
Metadata
Title
On Some Gaussian Oresme Numbers
Authors
Serpil Halici
Elifcan Sayin
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_25

Premium Partners