Skip to main content
Top
Published in:

20-11-2021 | Original Paper

On symbol-pair distances of repeated-root constacyclic codes of length \(2p^s\) over \({\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\) and MDS symbol-pair codes

Authors: Hai Q. Dinh, Abhay Kumar Singh, Madhu Kant Thakur

Published in: Applicable Algebra in Engineering, Communication and Computing | Issue 6/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Let \({\mathfrak {R}}={\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}\) with \(u^2=0\), where ms are positive integers and p is an odd prime. For any invertible element \(\varLambda\) of \({\mathfrak {R}}\), the symbol-pair distances of all \(\varLambda\)-constacyclic codes of length \(2p^s\) over \({\mathfrak {R}}\) are completely obtained. We identify all symbol-pair Maximum Distance Separable (MDS) constacyclic codes of length \(2p^s\) over \({\mathfrak {R}}\). As examples, many new symbol-pair codes, as well as symbol-pair MDS codes are constructed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Berman, S.D.: Semisimple cyclic and Abelian codes. II. Kibernetika (Kiev) 3, 21–30 (1967) (Russian). English translation: Cybernetics 3, 17–23 (1967) Berman, S.D.: Semisimple cyclic and Abelian codes. II. Kibernetika (Kiev) 3, 21–30 (1967) (Russian). English translation: Cybernetics 3, 17–23 (1967)
3.
go back to reference Chen, B., Dinh, H.Q., Liu, H., Wang, L.: Constacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl. 37, 108–130 (2016)MathSciNetCrossRef Chen, B., Dinh, H.Q., Liu, H., Wang, L.: Constacyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). Finite Fields Appl. 37, 108–130 (2016)MathSciNetCrossRef
4.
go back to reference Chen, B., Lin, L., Liu, H.: Constacyclic symbol-pair codes: lower bounds and optimal constructions. IEEE Trans. Inf. Theory 12, 7661–7666 (2017)MathSciNetCrossRefMATH Chen, B., Lin, L., Liu, H.: Constacyclic symbol-pair codes: lower bounds and optimal constructions. IEEE Trans. Inf. Theory 12, 7661–7666 (2017)MathSciNetCrossRefMATH
5.
go back to reference Chee, Y.M., Ji, L., Kiah, H.M., Wang, C., Yin, J.: Maximum distance separable codes for symbol-pair read channels. IEEE Trans. Inf. Theory 59(11), 7259–7267 (2013)MathSciNetCrossRefMATH Chee, Y.M., Ji, L., Kiah, H.M., Wang, C., Yin, J.: Maximum distance separable codes for symbol-pair read channels. IEEE Trans. Inf. Theory 59(11), 7259–7267 (2013)MathSciNetCrossRefMATH
6.
go back to reference Dinh, H.Q.: Constacyclic codes of length \(p^s\) over \({\mathbb{F}}_{p^m}+ u{\mathbb{F}}_{p^m}\). J. Algebra 324, 940–950 (2010)MathSciNetCrossRef Dinh, H.Q.: Constacyclic codes of length \(p^s\) over \({\mathbb{F}}_{p^m}+ u{\mathbb{F}}_{p^m}\). J. Algebra 324, 940–950 (2010)MathSciNetCrossRef
7.
go back to reference Dinh, H.Q., Nguyen, B.T., Singh, A.K., Yamaka, W.: MDS constacyclic codes and mds symbol-pair constacyclic codes. IEEE Access 9, 137970–137990 (2021)CrossRef Dinh, H.Q., Nguyen, B.T., Singh, A.K., Yamaka, W.: MDS constacyclic codes and mds symbol-pair constacyclic codes. IEEE Access 9, 137970–137990 (2021)CrossRef
8.
go back to reference Dinh, H.Q., Dhompongsa, S., Sriboonchitta, S.: On constacyclic codes of length \(4p^s\) over \(F_{p^m}+ uF_{p^m}\). Discrete Math. 340(4), 832–849 (2017)MathSciNetCrossRefMATH Dinh, H.Q., Dhompongsa, S., Sriboonchitta, S.: On constacyclic codes of length \(4p^s\) over \(F_{p^m}+ uF_{p^m}\). Discrete Math. 340(4), 832–849 (2017)MathSciNetCrossRefMATH
9.
go back to reference Dinh, H.Q.: On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions. Finite Fields Appl. 14(1), 22–40 (2008)MathSciNetCrossRefMATH Dinh, H.Q.: On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions. Finite Fields Appl. 14(1), 22–40 (2008)MathSciNetCrossRefMATH
10.
go back to reference Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain Rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)MathSciNetCrossRefMATH Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain Rings. IEEE Trans. Inform. Theory 50, 1728–1744 (2004)MathSciNetCrossRefMATH
11.
go back to reference Dinh, H.Q., Nguyen, B.T., Singh, A.K., Sriboonchitta, S.: Hamming and symbol-pair distances of repeated-root constacyclic codes of prime power lengths over \({\mathbb{F}}_ {p^ m}+ u{\mathbb{F}}_ p^ m\). IEEE Commun. Lett. 22(12), 2400–2403 (2018)CrossRef Dinh, H.Q., Nguyen, B.T., Singh, A.K., Sriboonchitta, S.: Hamming and symbol-pair distances of repeated-root constacyclic codes of prime power lengths over \({\mathbb{F}}_ {p^ m}+ u{\mathbb{F}}_ p^ m\). IEEE Commun. Lett. 22(12), 2400–2403 (2018)CrossRef
12.
go back to reference Dinh, H.Q., Wang, X., Liu, H., Sriboonchitta, S.: On the symbol-pair distances of repeated-root constacyclic codes of length \(2p^s\). Discrete Math. 342(11), 3062–3078 (2019)MathSciNetCrossRefMATH Dinh, H.Q., Wang, X., Liu, H., Sriboonchitta, S.: On the symbol-pair distances of repeated-root constacyclic codes of length \(2p^s\). Discrete Math. 342(11), 3062–3078 (2019)MathSciNetCrossRefMATH
13.
go back to reference Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: MDS symbol-pair cyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}\). IEEE Trans. Inf. Theory 66(1), 240–262 (2020)CrossRefMATH Dinh, H.Q., Nguyen, B.T., Sriboonchitta, S.: MDS symbol-pair cyclic codes of length \(2p^s\) over \({\mathbb{F}}_{p^m}\). IEEE Trans. Inf. Theory 66(1), 240–262 (2020)CrossRefMATH
14.
go back to reference Dinh, H.Q., Nguyen, B.T., Singh, A.K., Sriboonchitta, S.: On the symbol-pair distance of repeated-root constacyclic codes of prime power lengths. IEEE Trans. Inf. Theory 4, 2417–2430 (2018)MathSciNetCrossRefMATH Dinh, H.Q., Nguyen, B.T., Singh, A.K., Sriboonchitta, S.: On the symbol-pair distance of repeated-root constacyclic codes of prime power lengths. IEEE Trans. Inf. Theory 4, 2417–2430 (2018)MathSciNetCrossRefMATH
15.
go back to reference Dinh, H.Q., Satpati, S., Singh, A.K., Yamaka, W.: Symbol-triple distance of repeated-root constacylic codes of prime power lengths. J. Algebra Appl. 19(11), 2050209 (2019)CrossRefMATH Dinh, H.Q., Satpati, S., Singh, A.K., Yamaka, W.: Symbol-triple distance of repeated-root constacylic codes of prime power lengths. J. Algebra Appl. 19(11), 2050209 (2019)CrossRefMATH
16.
go back to reference Dinh, H.Q., Kumam, P., Kumar, P., Satpati, S., Singh, A.K., Yamaka, W.: MDS symbol-pair repeated-root constacylic codes of prime power lengths over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). IEEE Access 7, 145039–145048 (2019)CrossRef Dinh, H.Q., Kumam, P., Kumar, P., Satpati, S., Singh, A.K., Yamaka, W.: MDS symbol-pair repeated-root constacylic codes of prime power lengths over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). IEEE Access 7, 145039–145048 (2019)CrossRef
17.
go back to reference Dinh, H.Q., Singh, A.K., Thakur, M.K.: On Hamming and b-symbol distance distributions of repeated-root constacyclic codes of length \(4p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). J. Appl. Math. Comput. 66, 885–905 (2021)MathSciNetCrossRefMATH Dinh, H.Q., Singh, A.K., Thakur, M.K.: On Hamming and b-symbol distance distributions of repeated-root constacyclic codes of length \(4p^s\) over \({\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}\). J. Appl. Math. Comput. 66, 885–905 (2021)MathSciNetCrossRefMATH
18.
go back to reference Ding, B., Ge, G., Zhang, J., Zhang, T., Zhang, Y.: New constructions of mds symbol-pair codes. Des. Codes Cryptogr. 4, 841–859 (2018)MathSciNetCrossRefMATH Ding, B., Ge, G., Zhang, J., Zhang, T., Zhang, Y.: New constructions of mds symbol-pair codes. Des. Codes Cryptogr. 4, 841–859 (2018)MathSciNetCrossRefMATH
19.
go back to reference Falkner, G., Kowol, B., Heise, W., Zehendner, E.: On the existence of cyclic optimal codes. Atti Sem. Mat. Fis. Univ. Modena 28, 326–341 (1979)MathSciNetMATH Falkner, G., Kowol, B., Heise, W., Zehendner, E.: On the existence of cyclic optimal codes. Atti Sem. Mat. Fis. Univ. Modena 28, 326–341 (1979)MathSciNetMATH
20.
go back to reference Guenda, K., Gulliver, T.A.: Repeated-root constacyclic codes of length \(mp^s\) over \({\mathbb{F}}_{p^r}+ u{\mathbb{F}}_{p^r}...+u^{e-1}{\mathbb{F}}_{p^r}\). J. Algebra Appl. 14(01), 1450081 (2015)MathSciNetCrossRefMATH Guenda, K., Gulliver, T.A.: Repeated-root constacyclic codes of length \(mp^s\) over \({\mathbb{F}}_{p^r}+ u{\mathbb{F}}_{p^r}...+u^{e-1}{\mathbb{F}}_{p^r}\). J. Algebra Appl. 14(01), 1450081 (2015)MathSciNetCrossRefMATH
21.
22.
go back to reference López-Permouth, S.R., Özadam, H., Özbudak, F., Szabo, S.: Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Appl. 19(1), 16–38 (2013)MathSciNetCrossRefMATH López-Permouth, S.R., Özadam, H., Özbudak, F., Szabo, S.: Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes. Finite Fields Appl. 19(1), 16–38 (2013)MathSciNetCrossRefMATH
23.
go back to reference Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19(1), 101–110 (1973)MathSciNetCrossRefMATH Massey, J.L., Costello, D.J., Justesen, J.: Polynomial weights and code constructions. IEEE Trans. Inf. Theory 19(1), 101–110 (1973)MathSciNetCrossRefMATH
24.
Metadata
Title
On symbol-pair distances of repeated-root constacyclic codes of length over and MDS symbol-pair codes
Authors
Hai Q. Dinh
Abhay Kumar Singh
Madhu Kant Thakur
Publication date
20-11-2021
Publisher
Springer Berlin Heidelberg
Published in
Applicable Algebra in Engineering, Communication and Computing / Issue 6/2023
Print ISSN: 0938-1279
Electronic ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-021-00534-3

Premium Partner